The Global Terrestrial Network for River Discharge (GTN-R) is the river discharge component of the Global Terrestrial Network - Hydrology (GTN-H) to support the Global Climate Observing system (GCOS) and the Hydrology and Water Resources Programme of the WMO (HWRP). Core component is the GCOS Baseline River Network of gauging stations located near the mouth of the World’s major rivers. Update (July 2025): An article about the accreditation has been published in the WMO MeteoWorld issue 2/2025 . The article is also available as PDF version . Further information: GCOS Website
<p>Wasser als Ressource</p><p>Wasser ist ein existentieller Grundstoff des Lebens für Mensch, Tier und Pflanze. Von den weltweiten Wasserreserven sind nur knapp 3 % Süßwasser. Ein Großteil des Süßwassers ist in Eis, Schnee und Permafrostböden gebunden. Nur ein geringer Teil des verbleibenden Süßwassers ist tatsächlich nutzbar, ein Großteil ist nicht zugänglich. Zudem sind die Süßwasservorräte global ungleich verteilt.</p><p>Der Wasserkreislauf wird vor allem durch klimatische Faktoren wie Temperatur, Wind und Sonneneinstrahlung gesteuert. Weitere natürliche Faktoren wie die Pflanzenarten und -dichte beeinflussen die <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>; Bodenart und Struktur des Geländes, z.B. Hangneigung, wirken auf die Versickerungsfähigkeit und das Abflussgeschehen.</p><p>Zusätzlich beeinflussen menschliche Eingriffe den natürlichen Wasserkreislauf:</p><p>Deutschland hat im langjährigen Mittel ein <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a> von 176 Milliarden Kubikmeter (Mrd. m³). Davon entnahmen im Jahr 2022 öffentliche Wasserversorger, , Industrieunternehmen, Bergbau und Energieversorger sowie die Landwirtschaft insgesamt 17,9 Mrd. m³.</p><p>Energieversorger beziehen ihr Kühl- und Prozesswasser fast vollständig aus Flüssen, Seen und Talsperren. Auch Industrieunternehmen und das verarbeitende Gewerbe entnehmen das notwendige Wasser überwiegend aus Flüssen, Seen und Talsperren. Die Trinkwasserversorger decken ihren Bedarf zu gut 70 % aus Grund- und Quellwasser. Die Landwirtschaft nutzt vornehmlich Grundwasser (69,1 %).</p><p>Neben diesen direkten Wasserentnahmen nutzen wir auch indirekt Wasser durch den Konsum von Lebensmitteln sowie die Nutzung von Dienstleistungen und Produkten (z.B. Kleidung, elektronische Geräte), die im Ausland hergestellt und nach Deutschland eingeführt werden. Aus der Summe der direkten und indirekten Wassernutzung ergibt sich der sogenannte Wasserfußabdruck für Deutschland. Nach Berechnungen von<a href="https://www.umweltbundesamt.de/publikationen/konzeptionelle-weiterentwicklung-des">Bunsen et al.</a>(2022) beträgt er insgesamt rund 219 Mrd. m³ pro Jahr. Damit erzeugt jede Person in Deutschland durchschnittlich einen Wasserfußabdruck von 7.200 Liter täglich.</p><p></p>
Masterplan Wasserversorgung 2040 – Saarland rüstet sich für die Zukunft Trinkwasserversorgung im Saarland muss langfristig sichergestellt werden Politik und Verbände rufen Masterplan Wasserversorgung 2040 ins Leben Masterplan definiert Leitfaden – die „Gute wasserfachliche Praxis“ Wahrung des hohen Qualitätsstandards der Wasserversorgung nicht zum Nulltarif möglich Mit dem Ziel, die saarländische Trinkwasserversorgung in Zukunft nachhaltig sicherzustellen, haben Politik und Verbände den Masterplan „Zukunftssichere Wasserversorgung im Saarland 2040“ hervorgebracht. Für die saarländischen Wasserversorgungsunternehmen (WVU) ist das jetzt in Saarbrücken vorgestellte Dokument die Chance, die Zukunft der Wasserversorgung an der Saar aktiv in Eigenregie zu gestalten und abzusichern. Für Verbraucher hingegen bedeutet der betriebswirtschaftliche Ansatz seiner zahlreichen Handlungsempfehlungen, dass die Wahrung der hohen Wasser-Qualitätsstandards hierzulande angesichts veränderter Rahmenbedingungen und dringend erforderlicher Investitionen in die Wasserinfrastruktur perspektivisch auch bezahlbar bleibt. Zahlreiche Anlagen und Leitungen der Wasserversorgung in Deutschland werden altersbedingt in den nächsten Jahren an das Ende ihrer technischen Standardnutzungsdauer kommen. Und neben einer in die Jahre gekommenen Wasserinfrastruktur drängt der unleugbare Klimawandel mit merklichen Auswirkungen die Wasserwirtschaft zum Handeln. Die Herausforderungen Auch das Saarland bleibt von lang anhaltenden Trockenperioden sowie von Hitzerekorden, der Zunahme heißer Tage pro Jahr und heißer Sommer in Folge nicht verschont. Und während die fachlichen und gesetzlichen Anforderungen an die Wasserversorgung gestiegen sind, erhöhen über den Klimawandel hinaus auch Entwicklungen wie die Urbanisierung, der demografische Wandel und ein Strukturwandel in der Landwirtschaft den Druck auf unsere Wasserressourcen. Hinzu kommen zunehmende Nutzungskonkurrenzen und -konflikte durch Industrie-, Gewerbe- und Landwirtschaftsinteressen. Trinkwasserversorgung ist Daseinsvorsorge „Wasser ist ein lebenswichtiges Gut, das geschützt werden muss“, postuliert Petra Berg, Ministerin für Umwelt, Klima, Mobilität, Agrar und Verbraucherschutz des Saarlandes. „Durch die klimabedingt gewachsenen Herausforderungen gehören die Verfügbarkeit von ausreichenden Trinkwassermengen für die saarländische Bevölkerung und die Sicherung einer stabilen Wasserversorgung für unsere Industrie, Wirtschaft und Landwirtschaft zu den wichtigsten Zukunftsaufgaben.“ „Wasser ist keine übliche Handelsware, sondern ein ererbtes Gut, das geschützt, verteidigt und entsprechend behandelt werden muss“, heißt es ferner in der Präambel der EU-Wasserrahmenrichtlinie, die die herausgehobene gesellschaftliche Bedeutung des Wassers unterstreicht [Richtline 2000/60/EG des Europäischen Parlaments und des Rates]. Als ein lebensnotwendiges, unentbehrliches Gut, kann Wasser nicht ersetzt werden. So betrachtet auch der Deutsche Verein des Gas- und Wasserfaches e. V. (DVGW) die Grundversorgung mit Trinkwasser als Lebensmittel Nummer eins als die zentrale gesellschaftliche und generationenübergreifende Aufgabe im Sinne der Daseinsvorsorge. Der Masterplan Vor dieser Kulisse entstand im Saarland im Jahr 2018 in intensiver und kollegialer Zusammenarbeit der Landesministerien für Umwelt, für Wirtschaft, Gesundheit und des Inneren mit dem Landesamt für Umwelt- und Arbeitsschutz (LUA) sowie den Landesgruppen des DVGW, dem Verband kommunaler Unternehmen e. V. (VKU) und dem Verband der Energie- und Wasserwirtschaft des Saarlandes e. V. (VEWSaar) zunächst ein Letter of Intent im engen Schulterschluss mit den WVU an der Saar. In der Folge haben die aquabench GmbH und das Institut für sozial-ökologische Forschung (ISOE) GmbH über zweieinhalb Jahre hinweg gemeinsam mit allen Protagonisten den nun vorliegenden Masterplan „Zukunftssichere Wasserversorgung im Saarland 2040“ erarbeitet. Die Orientierung Das Ergebnis bündelt die technologischen Fakten und wissenschaftlichen Grundlagen, die alle Akteure der saarländischen Wasserwirtschaft in die Lage versetzen, valide Maßnahmen zu identifizieren und zu ergreifen, die heute erforderlich sind, um die Wasserversorgung von morgen qualitativ und quantitativ langfristig und nachhaltig, das heißt auch unter ökologischen Gesichtspunkten klimafreundlich sicherzustellen. Dabei ist der Masterplan präzise auf die jeweiligen hydrogeologischen Besonderheiten aller Wassergewinnungsgebiete des Saarlandes ausgerichtet. Ferner berücksichtigt das Werk jene veränderten Rahmenbedingungen, die mit dem Klimawandel verbunden sind, aber auch erkennbare Entwicklungen in puncto Demografie oder Wasserbedarfe und sogar den wachsenden Fachkräftemangel. Mit dem übergeordneten Ziel, die Versorgung der saarländischen Bevölkerung mit hygienisch einwandfreiem Trinkwasser im Sinne einer nachhaltigen Grundwasser-Bewirtschaftung auf lange Sicht weiterzuentwickeln, adressiert der Masterplan in erster Linie saarländische WVU und Wasserbehörden. Ebenso richtet er sich an Städte und Gemeinden, die kommunale Wasserkonzepte entwickeln. Durch seinen ganzheitlichen Ansatz zeigt der Masterplan, etwa durch Digitalisierung und Standardisierung oder seine Empfehlungen in Richtung interkommunaler Kooperationen einzelner WVU, neue Möglichkeiten, Synergien bei der Sanierung bzw. dem Neubau der Wasser-Infrastruktur zu nutzen, um die erforderlichen Investitionen möglichst niedrig zu halten. Empfehlung – neue Kooperationen und Synergien Nach Ergebnissen und Lösungsstrategien des Masterplans wird beispielsweise eine noch intensivere Zusammenarbeit und Vernetzung der WVU untereinander notwendig werden, um künftig temporäre und punktuelle Spitzenverbräuche (Peaks) besser und wirtschaftlicher kompensieren zu können, indem sich benachbarte Versorger „gegenseitig aushelfen“. Hier spricht der Plan konkret von „Verbundsystemen zur gegenseitigen Besicherung in der Wasserwirtschaft“. Durch die vorhandenen Strukturen und die von vornherein gute, für das Saarland typische Vernetzung, sind die Voraussetzungen hierfür gegeben. „Im Unterschied zu vielen kleinteiligen Insellösungen macht der Masterplan deutlich, wie viel Potenzial in einer stärkeren Vernetzung der saarländischen WVU untereinander, dem Teilen von Know-how, Engagement und Materialien, schlummert“, weiß Dr. Hanno Dornseifer, Vorstandsvorsitzender des VEWSaar. „Best Practices in diesem Kontext helfen den WVU zudem, ihre Prozesse angesichts neuer Herausforderungen schneller und effizienter zu optimieren.“ Der Masterplan evaluiert Maßnahmen aus der Vergangenheit wie das ÖWAV (Ökologische Wasserversorgungskonzept Saar von 1996), analysiert die Ist-Situation der saarländischen Wasserversorgungslandschaft und definiert schließlich die notwendigen Handlungsempfehlungen in technischer und betriebswirtschaftlicher sowie in struktureller und personeller Hinsicht. Konkret beschreibt er mit Blick auf seine Empfehlungen für die WVU die relevanten Parameter der einzelnen Wassergewinnungsgebiete. Dabei umfassen die zugrunde gelegten Erhebungen das nutzbare und zukünftig zur Verfügung stehende Grundwasserdargebot inklusive Grundwasserneubildung, die Leistungsfähigkeit der bestehenden Infrastruktur (Status quo von Brunnen, Aufbereitung, Transport und Speicherung) sowie Hochrechnungen der zukünftigen Trinkwasserbedarfe im Kontext von Faktoren wie Klimawandel, Demografie oder Urbanisierung. Leitfaden – die „Gute wasserfachliche Praxis“ An der Erstellung des Masterplans Wasserversorgung 2040 waren strukturell fünf sog. Themenkreise beteiligt, die sich um die Evaluierung des Ökologischen Wasserversorgungskonzeptes Saar (ÖWAV 1996), um Kennzahlen und die Ist-Situation der Unternehmen, Herausforderungen und notwendige Antworten sowie kaufmännische Fragestellungen und Managementsysteme drehten. In Summe sind alle daraus abgeleiteten Erkenntnisse in die Definition des Leitfadens der „Guten wasserfachlichen Praxis“, der für die saarländischen Wasserversorgungsunternehmen verpflichtend werden soll, eingeflossen. Dieser liefert die wasserwirtschaftlichen, technischen und betriebswirtschaftlichen Leitlinien für eine nachhaltige Wasserversorgung. Darauf aufbauend wird mit Zukunftsszenarien bis 2040 der jeweils zu erwartende Handlungsbedarf abgeleitet. Grundwasserneubildung Die Grundwasserneubildung, ein zentraler Bestandteil des Masterplans, gehört im Saarland insofern zu den bedeutendsten wasserwirtschaftlichen Kenngrößen, als Grundwasser hier die wichtigste Trinkwasserquelle ist. Ergebnisse der Untersuchungen, die aus dem Masterplan hervorgehen, zeigen, dass das Saarland in dieser Beziehung die vergleichsweise komfortabelste Position unter allen Bundesländern in Deutschland einnimmt. Im Vergleich zu den Jahren 1961 - 1990 gehen die Experten in der aktuellen Periode von 1991 - 2020 von einer rechnerisch um circa 5,9 % marginal geringeren Neubildung aus. Grundsätzlich wird daher zukünftig aus Vorsorgegründen eine mögliche Abnahme von 10 % bei den Grundwasserneubildungsdaten des ÖWAV für die nächsten Jahrzehnte veranschlagt. „Mit dem Masterplan setzt das Saarland deutschlandweit frühzeitig Maßstäbe in puncto Zukunftssicherheit seiner Wasserversorgung“, erklärt Dr. Ralf Levacher, Landesgruppenvorsitzender des VKU Saarland. „Angesichts der großen und vielschichtigen Herausforderungen gilt es jedoch jetzt, sich nicht auf dem Erreichtem auszuruhen, sondern in einem ständigen Verbesserungsprozess dieses existenzielle Element der Daseinsvorsorge auch in den kommenden Jahrzehnten sicherzustellen. Dies bedarf weiterer erheblicher Anstrengungen und wird auch eine Menge zusätzlicher Investitionen erfordern“, gibt der Manager zu bedenken. „Dies leisten zu können und dabei den Wasserbezug für die saarländischen Verbraucher bezahlbar zu erhalten, wird dabei eine besondere Herausforderung sein und möglicherweise die eine oder andere strukturelle Veränderung erforderlich machen.“ Wasserpreis für die Endkunden Den hohen Qualitätsstandard der Wasserversorgung in Deutschland unter schwierigeren Rahmenbedingungen zu halten, wird nicht zu Nulltarif möglich sein. Hier stellen Ansatz und Systematik des Masterplans für das Saarland sicher, dass flächendeckend alle Einsparpotenziale auch genutzt und umgesetzt werden. Folgende abschließende Betrachtung verdeutlicht besonders gut den Status quo und die reale Verhältnismäßigkeit vor dem Hintergrund der Dimension der Herausforderungen, denen sich die Wasserwirtschaft an der Saar gegenübersieht: Derzeit kostet der Liter Trinkwasser im Saarland durchschnittlich 0,0025 Euro (ein Viertel Cent). Das sind bei einem Durchschnittsverbrauch von circa 47.000 Litern pro Person und Jahr circa 117,50 Euro jährlich. Sollte der durchschnittliche Wasserpreis z.B. um ein Drittel steigen, liegen wir hier bei einem Mehraufwand von circa 40,10 Euro pro Person und Jahr. Das sind ungefähr 11 Cent pro Person und Tag.
Rechtsgrundlage: Nach § 91 des Niedersächsischen Wassergesetzes (NWG) in Verbindung mit § 51 des Wasserhaushaltsgesetzes (WHG) können Wasserschutzgebiete (WSG) im Interesse der öffentlichen Wasserversorgung bzw. zum Wohl der Allgemeinheit festgesetzt werden, um das Grundwasser im Gewinnungs- bzw. Einzugsgebiet einer Grundwasserentnahme vor nachteiligen Einwirkungen zu schützen. Flächen aller ausgewiesenen Wasserschutzgebiete im Kreisgebiet mit Schutzzonen von I bis III. Schutzzone I = Brunnen, Schutzzone II = nähere Umgebung um den Brunnen, Schutzzone III = weitere Schutzzone. Um den Schutz des Grundwassers/Trinkwassers zu garantieren, sieht die jeweilige Verordnung in den einzelnen Schutzzonen Einschränkungen der Nutzung (z.B. Ausbringen von Dünge- und Spritzmitteln, Materiallagerung, Bebauung) vor. WSG "Adelebsen", "Alte Riefensbeek", "Bad Sachsa", "Barbis", "Blümer Berg, Klus, Mielenhausen", "Bramwald", "Bühren", "Dankelshausen", "Eisdorf", "Friedland-Reckershausen", "Gelliehausen", "Gronespring", "Hattorf", "Hettensen", "Kleinalmerode", "Lenglern", "Lonau", "Magdeburger Stollen", "Moosgrund", "Nieste", "Oberode", "Reiffenhausen", "Reinhausen", "Renshausen", "Sattenhausen", "Scheden", "Sieber", "Sösetalsperre", "Stegemühle", "Steinatal", "Tiefenbrunn", "Uschlag", "Weendespring", "Witzenhausen", "Wulften", "Ziegenhagen", "Zorge".
Auf die Gefährdung der Trinkwasserressourcen durch persistente und mobile Stoffe wird seit Jahrzehnten hingewiesen. Für zahlreiche Befundstoffe in den Trinkwasserressourcen fehlt allerdings nach wie vor eine abschließende Bewertung ihrer intrinsischen Abbaubarkeit in der aquatischen Umwelt durch die verantwortlichen Unternehmen. Die Empfehlungen sollen einem breiten Anwenderkreis, z. B. den Laboratorien von WVU und Behörden mit etablierter Analytik, die Durchführung eines „kalten“ Abbautests nach OECD TG 309 für Befundstoffe in den eigenen Wasserressourcen erleichtern. Veröffentlicht in Texte | 174/2024.
The Watershed Boundaries of all GRDC Stations are generated on the basis of HydroSHEDS (Lehner et al., 2008) and the Multi-Error-Removed Improved-Terrain (MERIT) Hydro dataset (Yamazaki et al., 2019). It is updated as soon as changes in the metadata occur or new stations have to be implemented. The dataset is licensed under CC-BY-4.0. Source: Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, EOS, 89, 93-94, https://doi.org/10.1029/2008EO100001, 2008. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053-5073, https://doi.org/10.1029/2019WR024873, 2019. The Watershed Boundaries of all GRDC Stations are generated on the basis of HydroSHEDS (Lehner et al., 2008) and the Multi-Error-Removed Improved-Terrain (MERIT) Hydro dataset (Yamazaki et al., 2019). It is updated as soon as changes in the metadata occur or new stations have to be implemented. The dataset is licensed under CC-BY-4.0. Source: Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, EOS, 89, 93-94, https://doi.org/10.1029/2008EO100001, 2008. Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053-5073, https://doi.org/10.1029/2019WR024873, 2019.
Waterbase serves as the EEA’s central database for managing and disseminating data regarding the status and quality of Europe's rivers, lakes, groundwater bodies, transitional, coastal, and marine waters. It also includes information on the quantity of Europe’s water resources and the emissions from point and diffuse sources of pollution into surface waters. Specifically, Waterbase - Biology focuses on biology data from rivers, lakes, transitional and coastal waters collected annually through the Water Information System for Europe (WISE) – State of Environment (SoE) reporting framework. The data are expected to be collected within monitoring programs defined under the Water Framework Directive (WFD) and used in the classification of the ecological status or potential of rivers, lakes, transitional and coastal water bodies. These datasets provide harmonised, quality-assured biological monitoring data reported by EEA member and cooperating countries, as Ecological Quality Ratios (EQRs) from all surface water categories (rivers, lakes, transitional and coastal waters).
Origin | Count |
---|---|
Bund | 1426 |
Europa | 11 |
Global | 8 |
Kommune | 4 |
Land | 112 |
Wissenschaft | 7 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 5 |
Ereignis | 6 |
Förderprogramm | 1345 |
Text | 127 |
Umweltprüfung | 4 |
unbekannt | 60 |
License | Count |
---|---|
geschlossen | 157 |
offen | 1371 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 1231 |
Englisch | 477 |
Resource type | Count |
---|---|
Archiv | 6 |
Bild | 6 |
Datei | 18 |
Dokument | 66 |
Keine | 864 |
Unbekannt | 3 |
Webdienst | 3 |
Webseite | 649 |
Topic | Count |
---|---|
Boden | 1547 |
Lebewesen und Lebensräume | 1288 |
Luft | 999 |
Mensch und Umwelt | 1547 |
Wasser | 1547 |
Weitere | 1534 |