API src

Found 4034 results.

Related terms

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Die Zukunft des Transports von Wasserstoff gebunden an den Feststoff Eisen, HIT: Die Zukunft des Transports von Wasserstoff gebunden an den Feststoff Eisen

Makro-Skala-Modellierungskonzepte für das Wachstum und den advektiven Transport von Bakterien in mit zwei Phasen gesättigten porösen Medien

Poröse Medien bieten exzellente Lebensbedingungen für Bakterien, da ihr Lebensraum geschützt ist aber trotzdem eine kontinuierliche Nahrungezufuhr möglich ist. Folglich existieren Mikroorgansimen in vielen natürlichen und technischen porösen Medien und haben dort einen großen Einfluss. Wenn diese für technische oder industrielle Anwendungen genutzt werden, ist es sehr wichtig die Wechselwirkungen zwischen Strömung, Transport und mikrobiologischen Prozessen zu verstehen. In der Literatur ist eine Vielzahl von Modellierungsmethoden vorhanden, jedoch sind diese in der Regel unter einphasigen Strömungsbedingungen entwickelt worden. Es ist schwierig mikrobiologische Prozesse in den natürlichen und komplexen Porenstrukturen von Gesteinen (wie z.B. Anhaften/Ablösen und Bildung von Biofilmen) zu beobachten und demzufolge sind diese Prozesse unzureichend erforscht. In diesem Projekt werden künstliche Strukturen geschaffen, die den Porenstrukturen des Gesteins nachempfunden sind und dafür benutzt, das Verhalten von Bakterien in mit zwei Phasen gesättigten porösen Medien zu untersuchen. Diese transparenten sozusagen zweidimensionalen Mikromodelle erlauben eine direkte Beobachtung der mikrobiologischen Prozesse, wie z.B. Wachstum, Transport und Anhaftung/Ablösung von Bakterien, durch mikroskopische Auswertungen. Die Bakterien, die für die experimentellen Untersuchungen eingesetzt werden, gehören zu der Klasse der methanogenen Archaeen. Die detaillierte Interpretation der experimentellen Ergebnisse durch Bilddatenverarbeitung erlaubt es, zeitlich und räumlich aufgelöste Datensätze für die Anzahl, Struktur und Bewegung der Bakterien zu erzeugen. Aus diesen Datensätzen wird ein verbessertes mathematisches Modell entwickelt, welches das Wachstum und die Bewegung von Bakterien in mit zwei Phasen gesättigten porösen Medien beschreibt. Das Modell soll das bakterielle Wachstum unter nicht-nährstofflimitierten Bedingungen, das Vorhandensein von verschiedenen bakteriellen Strukturen (Plankton und Biofilm), die individuellen Bewegungseigenschaften und die Anhaftungs- und Ablösevorgänge berücksichtigen. Um das neu entwickelte Modell zu testen und zu parametrisieren, wird es auf Basis eines diagonal-impliziten Runge-Kutta-Verfahrens, welches für die stark nicht-linearen Quellterme gut geeignet ist, numerisch umgesetzt. Die Anwendung des theoretischen Modells bezieht sich auf die Technologie der Untergrundmethanisierung, in welcher das injizierte Gasgemisch aus Wasserstoff und Kohlenstoffdioxid durch mikrobiologische Reaktionen in Methan umgewandelt wird.

Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien

Entwicklung einer Mikro-Hybrid-Gas/ORC-Turbine, Teilvorhaben: Entwicklung einer Mikro-Hybrid-Gas/ORC-Turbine

Integriertes vollumfängliches Regio-Wasserstoffkonzept, Teilvorhaben: Modellierung gekoppelter Stromerzeugungs- und vollintegrierter Elektrolysesysteme

Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen, Teilvorhaben: Systemintegration und Feldversuch

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindliche Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

TransHyDE_FP2: Sichere Infrastruktur, Teilvorhaben SZMF: Sichere und nachhaltige Auslegung von Leitungsrohren für die H2-Infrastruktur

Entwicklung von Leitfäden zum Aufbau einer Wasserstoffinfrastruktur zur Integration erneuerbarer Energien, Teilprojekt: Weiterentwicklung der PORTAL GREEN Leitfäden, Kommunikation, Arbeitstreffen mit assoziierten Partnern und Workshops

Die deutsche und europäische Politik stimmt darin überein, dass Wasserstoff einen wesentlichen Beitrag leisten wird, um die Pariser Klimaziele zu erreichen. Avisiert sind bis 2030 mindestens 40 GW Elektrolysekapazität und 100 Mio. Tonnen Wasserstoff in Europa sowie bis zu 10 GW Elektrolysekapazität und 110 TWh/a Wasserstoffnachfrage in Deutschland. Die prognostizierte hohe Nachfrage nach Wasserstoff soll sowohl aus nationaler Erzeugung gedeckt als auch importiert werden. Dies lässt erwarten, dass sich der Wasserstoffmarkt und die dafür erforderliche Infrastruktur zügig entwickeln werden. Der Aufbau einer H2-Infrastruktur ist ein wesentliches Element eines klimaneutralen Energiesystems. Die bisherigen Projekte zu H2-Infrastrukturen sind vorwiegend technisch orientiert. Wie im Vorgängerprojekt PORTAL GREEN für Power-to-Gas-Anlagen gezeigt, besteht auch hinsichtlich der H2-Netzinfrastrukturen in der Praxis Bedarf an Klarstellung und Strukturierung der Verfahren zur Genehmigung, da sowohl auf Planer-, Betreiber- und Behördenseite Erfahrungen und etablierte Vorgehen fehlen. Insbesondere besteht noch deutlicher Klärungsbedarf bei den Rahmenbedingungen für eine solche H2-Netzinfrastruktur. Hierzu zählt, neben der Neuerrichtung, und a. auch die Umstellung bestehender Erdgasinfrastrukturen für Wasserstoff. Die Schaffung eines aktuellen und praxisnahen Leitfadens für Bau und Betrieb inkl. Genehmigung von H2-Netzinfrastrukturen, als eine wesentliche Grundlage für deren effiziente Errichtung, soll mit diesem Projekt erreicht werden. Zusammen mit der Aktualisierung und Erweiterung der Leitfäden aus dem Vorgängerprojekt liefert PORTAL GREEN II damit einen wichtigen Beitrag zur Etablierung von Wasserstoff als innovativem Energieträger im zukünftigen Energiesystem.

Entwicklung von Leitfäden zum Aufbau einer Wasserstoffinfrastruktur zur Integration erneuerbarer Energien, Teilvorhaben: Rechtliche Aspekte im Rahmen der Leitfadenentwicklung

Die deutsche und europäische Politik stimmt darin überein, dass Wasserstoff einen wesentlichen Beitrag leisten wird, um die Pariser Klimaziele zu erreichen. Avisiert sind bis 2030 mindestens 40 GW Elektrolysekapazität und 100 Mio. Tonnen Wasserstoff in Europa sowie bis zu 10 GW Elektrolysekapazität und 110 TWh/a Wasserstoffnachfrage in Deutschland. Die prognostizierte hohe Nachfrage nach Wasserstoff soll sowohl aus nationaler Erzeugung gedeckt als auch importiert werden. Dies lässt erwarten, dass sich der Wasserstoffmarkt und die dafür erforderliche Infrastruktur zügig entwickeln werden. Der Aufbau einer H2-Infrastruktur ist ein wesentliches Element eines klimaneutralen Energiesystems. Die bisherigen Projekte zu H2-Infrastrukturen sind vorwiegend technisch orientiert. Wie im Vorgängerprojekt PORTAL GREEN für Power-to-Gas-Anlagen gezeigt, besteht auch hinsichtlich der H2-Netzinfrastrukturen in der Praxis Bedarf an Klarstellung und Strukturierung der Verfahren zur Genehmigung, da sowohl auf Planer-, Betreiber- und Behördenseite Erfahrungen und etablierte Vorgehen fehlen. Insbesondere besteht noch deutlicher Klärungsbedarf bei den Rahmenbedingungen für eine solche H2-Netzinfrastruktur. Hierzu zählt, neben der Neuerrichtung, und a. auch die Umstellung bestehender Erdgasinfrastrukturen für Wasserstoff. Die Schaffung eines aktuellen und praxisnahen Leitfadens für Bau und Betrieb inkl. Genehmigung von H2-Netzinfrastrukturen, als eine wesentliche Grundlage für deren effiziente Errichtung, soll mit diesem Projekt erreicht werden. Zusammen mit der Aktualisierung und Erweiterung der Leitfäden aus dem Vorgängerprojekt liefert PORTAL GREEN II damit einen wichtigen Beitrag zur Etablierung von Wasserstoff als innovativem Energieträger im zukünftigen Energiesystem.

1 2 3 4 5402 403 404