API src

Found 3933 results.

Related terms

Redox processes along gradients

The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.

Adaptive Umgebungsabhängige Lokalisierung von autonomen Fahrzeugen durch Methoden der künstlichen Intelligenz, Teilvorhaben C_HYDROGENIOUS LOHC NRW GmbH

Adaptive Umgebungsabhängige Lokalisierung von autonomen Fahrzeugen durch Methoden der künstlichen Intelligenz

Entwicklung von Messverfahren zur Bestimmung von CO, H2, H2CO, Hg und N2O in Luft und Wasser

Zielsetzung: Erforschung der Kreislaeufe der o.g. Gase in der Atmosphaere. Dazu gehoert u.a. die Bestimmung der Verteilung dieser Gase in der Atmosphaere, die Erfassung moeglicher Quellen und Senken sowie Bestimmung der Abbau- bzw. Produktionsraten. Da kommerziell verfuegbare Geraete, die zu diesen Untersuchungen benoetigt werden, nicht ueber die ausreichende Empfindlichkeit verfuegen, muessen Nachweismethoden und Messgeraete selbst entwickelt werden.

Entwicklung einer innovativen Gassensensorik zur Erfassung des Wasserstoffgehaltes in Erdgas und zur Bestimmung der Gasqualität

Das Projekt zielt darauf ab, einen innovativen Gassensensor zur Messung verschiedener Gasqualitätsparameter in Wasserstoff/Erdgas-Gemischen zu entwickeln und praktisch im Gasnetz zu testen. Dazu sind mehrere Prototypen erforderlich die dem späteren Serienprodukt, hinsichtlich der Messeigenschaften möglichst nahekommen. In einer Übergangsphase bis ca. 2040 wird nicht ausreichend H2 für eine komplette H2-Umstellung der Gasversorgung zur Verfügung stehen. Neben reinen, lokalen H2-Netzen werden H2/Erdgas-Gemische hergestellt werden. Der Wasserstoff soll dem Erdgas zugemischt werden und kann somit auf die vorhandenen Gas-Infrastruktur zurückgreifen. Derzeitig werden Konzentrationen von bis zu 20 Vol.-% H2 im Erdgas diskutiert, die in den nächsten Jahren im Netz erreicht werden sollen. Das ist messtechnisch zu kontrollieren. Der Projektpartner Wi.Tec Sensorik GmbH entwickelt eine entsprechende Sensortechnik, die auf Basis der H2-Konzentrationsmessung weitere notwendige Gas-Beschaffenheitsparameter ermittelt (Brennwert, Dichte etc.). Die Aufgabe des DBI besteht in der Prüfung des Gerätes im Labor, der Validierung der Messergebnisse und der Berechnungen sowie der Durchführung von Gerätetests im realen Feld, d.h. im Gasnetz und bei weiteren potenziellen Abnehmern, den Gaskunden. Der Vergleich erfolgt mittels bei Antragsteller vorhandener aufwändiger Messtechnik (Gaschromatographen), das Prüflabor ist für Messungen von Gasgemischen akkreditiert.

Multi-use floating offshore topside structure for Wind Energy

Turbomaschinen für Hydrogen Technologien, Teilvorhaben: 3.3 und 4.4b Wasserverdunstung im Laufrad eines Radialverdichters und Untersuchung eines digitalen Zwillingmodells von Gasdichtungen

Das Forschungsvorhaben untersucht auf der einen Seite die Auswirkungen der Wassereinspritzung auf das Betriebsverhalten eines Radialverdichters. Die Wassereinspritzung in Axialverdichtern von Gasturbinen ist eine gängige Praxis, um die Leistungsfähigkeit der Turbine zu verbessern. Um dieses Potenzial auch in Radialverdichtern zu nutzen, sind weitere Forschungsarbeiten im Bereich der Flüssigkeitseinspritzung notwendig. Die Radialverdichter werden hauptsächlich in der Prozessindustrie eingesetzt. Ziel dieses Projektes ist es die Berechnung und Einflüsse der Wassereinspritzung auf das Betriebskennfeld eines Radialverdichters zu untersuchen. Im Projekt (FKZ: 03EE5035B) wurde ein Radialverdichter mit Wassereinspritzung aufgebaut und Kennfelder mit und ohne Wassereinspritzung vermessen. Unklar ist das Potenzial der Wassereinspritzung, welches durch den Ort der Verdunstung bestimmt wird, welches hier adressiert werden soll. Im zweiten Thema wird die Abdichtung der Wellenenden, die verhindert, dass das Prozessfluid aus der Maschine in die Atmosphäre entweicht. Die Forschung an berührungslosen Gleitringdichtungen mit Trockengasschmierung DGS (Dry Gas Seals), wird aufgrund des geringen und kontrollierbaren Leckagestroms, des berührungslosen Betriebs und der Eignung für die Hochdruckumgebung, als Dichtungslösung eingesetzt. Im Projekt (FKZ: 03EE5041H) wurden die Prognosemodelle zur Berechnung des Dichtspaltes entwickelt und in ein digitales Zwillingsmodell implementiert. Die gesamte Architektur des digitalen Zwillings basierend auf einer Open Source IoT-Plattform. Im neuen Projekt wird das Gesamtkonzept auf eine reale Maschine übertragen. Die messbaren und nicht messbaren Prozessgrößen der realen Anlage und ihre logischen Zusammenhänge werden mit Hilfe von maschinellem Lernen und physikbasierten Modellen analysiert. Die Ergebnisse werden zur Leistungsoptimierung von Radialverdichtern in der Prozessindustrie genutzt.

BioKreativ 1 - BioPV4H2: Biophotovoltaics für die Herstellung von Bio-Wasserstoff aus Wasser, Kohlenstoffdioxid und Sonnenlicht

Ammoniak Cracking: Ammoniak als Wasserstoffträger für den interkontinentalen Transport, Ammoniak Cracking: Ammoniak als Wasserstoffträger für den interkontinentalen Transport

Auf dem Weg zur Dekarbonisierung der deutschen Wirtschaft ist die Verfügbarkeit großer Mengen 'grünen' Wasserstoffs von entscheidender Bedeutung. Bis 2030 erwartet die Bundesregierung einen nationalen Wasserstoffbedarf von rund 90 bis 110 TWh. Der zusätzliche Verbrauch wird im Industriesektor (z.B. Stahlproduktion) und im Mobilitätsbereich mit Brennstoffzellen (z.B. Busse, Flugzeuge) benötigt. Da die nationale Produktion an grünen Wasserstoff in Deutschland jedoch für die nationalen Dekarbonisierungsziele nicht ausreicht, setzt die Bundesregierung auf umfangreiche Importe aus Regionen mit günstigen erneuerbaren Energien. Für einen energieeffizienten Wasserstofftransport ist die Umwandlung von Wasserstoff in Ammoniak, das eine hohe Wasserstoffdichte aufweist, sinnvoll. Die Rückgewinnung des Wasserstoffs aus Ammoniak erfolgt am Zielort über das sogenannte Ammoniak Cracking. Stand der Technik ist, dass die Ammoniakspaltung industriell bisher nur für kleine Nischenanwendungen, mit nur geringen Wasserstoffströmen (typische Größe: 1 - 2 t pro Tag) angewendet wird. Vor dem Hintergrund der nationalen Klimaschutzziele, der angestrebten Reduktion der CO2-Emissionen und der angespannten Versorgungslage mit Energierohstoffen, strebt das Forschungsprojekt HyPAC eine Transformation der deutschen Wirtschaft auf Wasserstoff-Basis an. Im Rahmen von HyPAC soll ein neues Verfahren zur Wasserstofferzeugung aus Ammoniak, entwickelt und erstmalig in einer Miniplant demonstriert werden. Linde strebt einen industriellen, leicht skalierbaren und energieeffizienten Ammoniak Cracking Prozess an, um im großen Maßstab Wasserstoff (~ 500 t pro Tag) in hoher Reinheit und zu attraktiven Preispfaden zentral zu erzeugen und für große industrielle Abnehmer, wie chemische Industrie, Wasserstoff-Pipeline-Netz oder Gasturbinen, bereitzustellen. Bei Projekterfolg kann das Verfahren einen großen Beitrag zur signifikanten Reduktion der CO2-Emissionen aus Stromerzeugung, Verkehr und Industrie, leisten.

Evidenzbasiertes Assessment für die Gestaltung der deutschen Energiewende auf dem Weg zur Klimaneutralität, Teilvorhaben L0-2

1 2 3 4 5392 393 394