<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021 (siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>
Im Zuge der Dekarbonisierung der Energieerzeugung werden neuartige Speicher und Energieumwandlungstechnologien erforderlich, um den volatilen Strom- und Wärmebedarf effizient zu decken. Eine vielversprechende Möglichkeit ist dabei die Erzeugung von Wasserstoff mit Strom aus erneuerbaren Energien mittels Elektrolyse. Die chemisch in Form von Wasserstoff gespeicherte Energie kann dann zum Ausgleich des volatilen Energiebedarfs verwendet werden. Die direkte Verbrennung von Wasserstoff und Sauerstoff, die außer Wasserdampf keine weiteren Verbrennungsprodukte erzeugt und damit schadstofffrei ist, kann dabei direkt in Wasser-Dampf-Kreisläufe integriert werden. Im Rahmen dieses Vorhabens wird die direkte Verbrennung von Wasserstoff und Sauerstoff in einer Dampfatmosphäre detailliert untersucht, wobei die Parameter identifiziert werden sollen, die eine möglichst vollständige Verbrennung erwarten lassen. Die gewonnenen Erkenntnisse fließen in das Design eines wasserstoffbefeuerten Dampferzeugers ein, dessen Funktion durch Prüfstandtests nachgewiesen wird. Danach soll der Dampferzeuger in einen geschlossenen Wasser-Dampfkreislauf eines bestehenden Turbinenprüfstandes integriert werden. Teil des Projektes sind auch die Planungsschritte, der Umbau sowie alle damit verbundenen betrieblichen Aspekte. Schwerpunkt ist dabei die Untersuchungen der Akkumulation von unverbranntem Wasserstoff und Sauerstoff in dem geschlossenen Kreislauf. Ein weiterer, zu untersuchender Aspekt wird das transiente Verhalten des Dampferzeugers bei verschiedenen Lastzuständen sein. Ziel ist es, mit Abschluss des Projektes ein umfassendes Bild über die Anwendung eines wasserstoffbetriebenen Dampferzeugers in geschlossenen Wasser-Dampf-Kreisläufen zu bekommen.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
In MemKoWI ist geplant, Membranverfahren für die Abtrennung von CO2 und H2 in Industrien zu untersuchen, in denen sie bisher nicht etabliert sind. Das Potenzial, dass sie sich hier als skalierbare und durch die Möglichkeiten verschiedene keramische und polymere Membranmaterialien zu innovativen Kombinationen Lösungen zu verschalten, flexible und anpassbare Technologie, erweist ist sehr groß. Allerdings ist ebenfalls mit erheblichen Risiken zu rechnen. Im Vergleich zu den bisher untersuchten Einsätzen von Membranverfahren zur CO2-Abtrennung aus Kohlekraftwerksrauchgasen, zeichnen sich die in MemKoWI adressierten Gase durch andere Zusammensetzungen aus. Somit kann die Einsetzbarkeit der Verfahren zwar durch Berechnungen abgeschätzt, deren stabiler Einsatz aber nur im Versuch im Betriebsumfeld nachgewiesen werden. Potenzielle Anwender können so von den Vorteilen der Membranverfahren überzeugt werden. In MemKoWI ist der Einsatz von drei Testanlagen geplant. Eine der Anlagen ist bereits vorhanden und soll modifiziert werden, während die beiden anderen Anlagen neu zu bauen sind. Die hiermit verbundenen Kosten sind weder aus der Grundfinanzierung der beteiligten Forschungsinstitutionen noch aus den F&E-Budgets der beteiligten Unternehmen zu finanzieren. Weiterhin stellt die Einbindung der Anlagen in Industriestandorte einen erheblichen, anderweitig nicht finanzierbaren Aufwand dar. Die für die Membranherstellung verwendeten Rohmaterialien müssen in hinreichender Menge beschafft, verarbeitet und in Membranmodule verbaut werden. Auch die Ausgaben hierfür übersteigen die F&E-Budgets. Das für die Durchführung der geplanten Arbeiten notwendige Personal kann nur zum Teil aus der Grundfinanzierung gestellt werden. Projektpersonal muss, gerade auch im Hinblick auf die Erstellung wissenschaftlicher Arbeiten, eingestellt werden und der Personalaufwand für die Betreuung der Testanlagen abgedeckt werden.
Die SO2-depolarisierte Elektrolyse (SDE) ist ein vielversprechendes Wasserelektrolyse-Verfahren um aus einer SO2/H2O-Mischung Wasserstoff und Schwefelsäure zu erzeugen. Dieser Prozess ist thermodynamisch besonders effizient und ermöglicht die Erzeugung von Schwefelsäure, welche im Rahmen der Kreislaufwirtschaft auch direkt in einem Prozess zur Aufarbeitung zinkhaltiger Abfälle eingesetzt werden. Der Wasserstoff kann dann verwendet werden, um fossile Energieträger beim Schwefelsäurerecycling zu ersetzen. Im Rahmen des Projekts Sul4Fuel soll die innovative Technologie im industriellen Maßstab erprobt werden. Dazu ist eine Weiterentwicklung der an der finnischen Aalto-Universität im Technologiereifegrad (TRL) von 4-5 erprobten Technologie der SDE erforderlich. Die Umsetzung im Pilotmaßstab unter Erreichung von TRL 6-7 soll am Standort Duisburg der Grillo-Werke geschehen. Ziel des Teilvorhabens von Grillo ist es, eine SDE-Pilotanlage zu entwerfen, zu beschaffen und in Betrieb zu nehmen. Das Teilvorhaben von Grillo basiert auf den Ergebnissen der Teilvorhaben des DLR und HPs.
Im vorgeschlagenen Projektentwurf LeiWaCo soll ein kostengünstiger und gleichzeitig hochfester Leichtbau-Wasserstofftank aus Faserverbundwerkstoffen für Flüssigwasserstoff zu entwickelt werden mit dem Anwendungsziel des Einsatzes in einer neuen, branchenübergreifend einsetzbare Logistiklösung in Form einer containerbasierten Transport- und Versorgungseinheit. Daneben betrachtet das branchenübergreifend aufgestellte Konsortium aber auch die Adaption der entwickelten Technologien für Tanks in den Bereichen Straßenverkehr, Schifffahrt, Schienenverkehr und Luftfahrt. Eine der wesentlichen Herausforderungen bei der Entwicklung von kryogenen Faserverbundtanks ist die Dichtigkeit, die durch thermisch induzierte Mikrorisse im Material aufgrund der tiefen Temperatur von -253 Grad C beeinträchtigt wird. Dies soll im Projekt durch einen neuartigen Ansatz verhindert werden: Die Verwendung thermoplastischer Materialien in Kombination mit der Anwendung der Dünnschichttechnologie. Hierfür werden neue Konstruktions- und Berechnungsmethoden, neue Halbzeug und Materialtest, entsprechende Fertigungstechnologien und Prüfmethoden für das Bauteil entwickelt und angewendet. Im Rahmen des Projektes wir somit die komplette Wertschöpfungskette abgedeckt und anhand von Demonstratoren validiert. Am Ende des Projektes steht an ein Versuchsaufbau in Einsatzumgebung, wesentliche Technikelemente werden in relevanter Umgebung erprobt. Dies entspricht einem Technologiereifegrad von fünf, der die Basis für eine wirtschaftliche Verwertung der Ergebnisse im Anschluss an das Projekt darstellt.
| Origin | Count |
|---|---|
| Bund | 3633 |
| Kommune | 4 |
| Land | 238 |
| Wissenschaft | 43 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 288 |
| Daten und Messstellen | 29 |
| Ereignis | 1 |
| Förderprogramm | 3128 |
| Gesetzestext | 280 |
| Hochwertiger Datensatz | 3 |
| Kartendienst | 1 |
| Text | 220 |
| Umweltprüfung | 97 |
| unbekannt | 123 |
| License | Count |
|---|---|
| geschlossen | 602 |
| offen | 3184 |
| unbekannt | 105 |
| Language | Count |
|---|---|
| Deutsch | 3705 |
| Englisch | 536 |
| Resource type | Count |
|---|---|
| Archiv | 114 |
| Bild | 3 |
| Datei | 122 |
| Dokument | 276 |
| Keine | 2740 |
| Unbekannt | 4 |
| Webdienst | 10 |
| Webseite | 882 |
| Topic | Count |
|---|---|
| Boden | 2397 |
| Lebewesen und Lebensräume | 2622 |
| Luft | 2133 |
| Mensch und Umwelt | 3891 |
| Wasser | 1655 |
| Weitere | 3429 |