Die Dekarbonisierung der Stromerzeugung ist von zentraler Bedeutung zum Erreichen der nationalen und europäischen Klimaschutz- und Energieziele. Die G7 verpflichten sich zu dem Ziel einer überwiegend dekarbonisierten Stromversorgung bis 2035 und Sie bekennen sich dazu die Kohleverstromung zu beenden. Im Vorhaben sollen neben qualitativen Analysen auch modellbasierte Analysen für eine treibhausgasneutrale Stromerzeugung Deutschlands bis 2035 im europäischen Binnenmarkt durchgeführt werden. In einem ersten Schritt sollen dafür Szenarien berechnet werden, die eine Entwicklung unter den aktuellen nationalen und europäischen Beschlüsse zum Klimaschutz berücksichtigen. Darauf aufbauend sollen Instrumente entwickelt, modelliert und bewertet werden, die eine nahezu treibhausgasneutrale Stromerzeugung in Deutschland bis zum Jahr 2035 ermöglichen. Dabei sollen sowohl Instrumente untersucht werden, die durch Innovationsförderung und/oder Subventionen Erdgas aus dem Markt drängen und dafür Wasserstoff oder wasserstoffbasierte Brennstoffe anreizen (Innovationsstrategie), als auch solche Instrumente, die durch Pönalisierung zu einem Ausstieg führen (Exnovationsstrategie). Von besonderer Bedeutung für die Transformation der Stromversorgung ist neben dem schnellen Ausbau der erneuerbaren Energien insbesondere die Verzahnung mit dem Aufbau der Wasserstoffinfrastruktur und der Bereitstellung von Wasserstoff. Dies ist für die Dekarbonisierung der brennstoffbasierten Stromerzeugung von zentraler Bedeutung. Vor diesem Hintergrund braucht es weitere Untersuchungen zur Entwicklung der Gasverstromung bis 2035 und darüber hinaus, sowie zu der Verzahnung der Entwicklung im Kraftwerkspark mit dem Aufbau der Wasserstoffinfrastruktur und der Bereitstellung von Wasserstoff.
Für die Transformation zu einer dekarbonisierten Wirtschaft ist Wasserstoff als Energieträger, -speicher und Element der Sektorkopplung ein zentraler Baustein. Normen und Standards bilden, zusammen mit den rechtlichen Rahmenbedingungen, das Grundgerüst für den erfolgreichen nationalen, europäischen und internationalen Markthochlauf dieser Wasserstofftechnologien. Normen und Standards definieren Terminologie, Schnittstellen, Sicherheits-, System- und Qualitätsanforderungen, sowie Prüfungs- und Zertifizierungsgrundlagen. Technische Regelsetzung unterstützt rechtssicheres Handeln und bildet die Grundlage für belastbare wirtschaftliche Investitionen. Das Ziel des Projekts 'Normungsroadmap Wasserstofftechnologien' ist es, die Voraussetzungen für eine vollständige Qualitätsinfrastruktur zu schaffen, die eine elementare Basis für den erfolgreichen Markthochlauf der H2-Technologien darstellt. Konkret planen die Projektparteien die Erarbeitung und sukzessive Fortschreibung einer 'Normungsroadmap Wasserstofftechnologien' und die Umsetzung der darauf basierenden konkreten Normungs- und Standardisierungsempfehlungen. Dazu werden die wichtigsten Akteur*innen identifiziert und eingebunden, damit die Umsetzung auf breitem Konsens basierend ressort- und branchenübergreifend kann. Ziel ist es, sich national abzustimmen hinsichtlich der Priorisierung von Normungsprojekten, sodass gezielt die Federführung auf europäischer und internationaler Ebene übernommen werden kann. Die Roadmap zeigt konkrete Normungs- und Standardisierungsbedarfe und Pilotprojekte auf und dient als Grundlage für projektbegleitende und anschließende Normungs- und Standardisierungsaktivitäten. Durch die enge Verzahnung der Erarbeitung der Normungsroadmap und dem Anstoßen der konkreten Normungsprojekte, wird eine schnelle und gezielte Erweiterung und Anpassung des technischen Regelwerks bewirkt.
Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindende Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.
Ziele Die Zielstellung des Projekts im Rahmen der Technologieoffensive Wasserstoff ist es, die bestehende alkalische Elektrolyse (AEL) in die nächste Generation zu überführen. Die nächste Generation der AEL - AWEC++ - lässt sich durch 4 Punkte definieren. I. Stabilität bei erhöhten Temperatur- und Druckbedingungen (180 Grad C, 35 bar), um höhere Stromdichten zu erreichen ( größer als 1000 mA cm 2). Dies führt zur Halbierung des CAPEX durch Steigerung der H2-Produktion bei konstanten Installationskosten. II. Ein Modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalierbar ist. Dessen Herzstück ist ein keramisches, plasmagespritztes MEA, sowie laminierte 3D-Gewebe-Elektroden und Laser- oder ECM-prozessierte Bipolarplatten. III. Dynamik in der Wasserstoff-Produktionsleistung, um den volatilen Erneuerbaren Energien ohne kostspielige Zwischenspeicher gerecht zu werden (500 ms). IV. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte, um größer als 150 GW an installierter Leistung langfristig umsetzen zu können. Stand der Wissenschaft und Technik In der alkalischen Elektrolyse wird Wasserstoff H2 an der Kathode und Sauerstoff O2 an der Anode aus Wasser erzeugt. Hydroxid-Ionen OH- wandern zwischen beiden durch ein Diaphragma in wässrigem Elektrolyt (35 % KOH). In der ursprünglichen Variante der alkalischen Elektrolyse (AEL) wurden an Metallplatten als Elektroden genutzt. In moderneren Verfahren sind sogenannte Zero-Gap-Anordnungen üblich, welche durch einen geringeren Elektrodenabstand ohmische Verluste verringern. Als Elektrodenmaterial werden aktuell überwiegend Nickellegierungen verwendet. Langjährige Erfahrung besitzt PACO im Bereich von Hoch- und Niedrigtemperatur-Brennstoffzellen. So entstanden abgestimmte Gewebe auf Nickel-Basis oder kostenoptimierte Spezialgewebe bei gleichbleibenden Eigenschaften in der Anwendung als 3D-Elektroden.
Basierend auf 10 Jahren globaler Lyman-a Beobachtungen von TWINS wird vorgeschlagen, in 3D die Variation der neutralen Exosphäre der Erde verursacht von Variabilität der solaren Aktivität (nur Sonnenwind oder UV und beide gemeinsam) auf Zeitskalen von Jahren (solarer Zyklus) über Tage (27 Tage solare Rotation) bis zu Stunden (geomagnetische Stürme) zu untersuchen.Die Exosphäre ist die äußerste Region der Atmosphäre und besteht vor allem aus neutralem Wasserstoff (H). Als Übergang in den interplanetaren Raum spielt sie eine wichtige Rolle für die gesamte Entwicklung der Erdatmosphäre von der urzeitlichen Vergangenheit bis in die Zukunft, z.B. durch Verlust von H aus Oberflächenwasser in den Weltraum. Da unmittelbar der UV-Strahlung und solaren Aktivität ausgesetzt können Space Weather-Ereignisse (wie geomagnetische Stürme) signifikante Effekte auf die neutrale Exosphäre haben. Über die quantitativen Einflüsse und die relevanten physikalischen Prozesse ist bislang nur wenig bekannt.Exosphärische H-Atome streuen resonant solare Lyman-a Strahlung zurück. Die gestreute Intensität ist proportional zur lokalen H-Dichte im optisch dünnen Bereich oberhalb von 3 Re (Erdradien). Die TWINS Daten enthalten einzigartige kontinuierliche exosphärische Lyman-a Messungen in 3D aus 10 Jahren und sind erst teilweise analysiert.Es wird vorgeschlagen, mittels tomographischer und kinetischer Modelle in 3D die dynamische H-Dichtevariationen verursacht durch variierendes Space Weather auf verschiedenen Zeitskalen bei 3-8 Re zu untersuchen.Erstens soll die Entwicklung der H-Dichteverteilung über den solaren Zyklus 2008-2018 in 3D charakterisiert werden, insbesondere wie totale H-Dichte, radiale Profile und regionale Asymmetrien rund um die Erde (polar/äquatorial, Tag/Nacht usw.) an den solaren Zyklus gekoppelt sind.Zweitens soll die hoch dynamische Reaktion auf geomagnetische Stürme erstmals in 3D mit Zeitauflösung von Stunden bis ~30 min auf Basis der einzigartig großen Menge an Stürmen in den TWINS-Daten analysiert werden. Durch Monte Carlo Simulationen sollen beitragende physikalische Mechanismen bestimmt und quantifiziert werden.Drittens wird vorgeschlagen, den alleinigen Einfluss von solaren UV-Variationen bei relativ konstantem Sonnenwind zu untersuchen anhand der solaren 27 Tage UV-Variation sowie eruptiver solare UV-Ausbrüche. Im Fokus stehen hier die Effekte durch periodische und eruptive Variationen des Strahlungsdrucks bzw. der Photoionisation, insbesondere auf orbitierende H-Atome in größeren Distanzen.Die Verfügbarkeit eines 3D H-Dichtemodells mit Berücksichtigung dynamischer Variationen durch veränderliches Space Weather wäre ein großer Fortschritt im Verständnis der neutralen Exosphäre. Es besitzt auch eine große Bedeutung für kommende Missionen zur Erforschung der Magnetosphäre (wie SMILE, LEXI oder STORM) auf Basis von ENA- bzw. Soft Röntgen-Messungen, die zur Invertierung korrekte lokale exosphärische H-Dichten zu einer beliebigen Zeit benötigen.
Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
In dem hier vorgeschlagenen Projekt möchten wir ein integriertes biotechnologisches System für die Verwertung fester und gelöster organischer Abfallströme zu Bioenergie entwickeln. Es sind bereits einige Technologien für die Bioenergiegewinnung aus Abfällen etabliert. Allerdings ist es die Verbindung mit weiteren neuen Technologien zu einem modularen Netzwerk von kommunizierenden Modulen, was für zukünftige Akteure notwendig sein wird, um die Biomasse-/Bioabfallressourcen bis zu ihrem vollen Potenzial hin nutzen zu können. Wir möchten eine skalierbare Pilotanlage für die integrierte Umwandlung fester und löslicher organischer Abfallströme in Biogas und Wasserstoff entwickeln. Zu diesem Zweck sollen drei Module gebaut und miteinander verbunden werden, die aus der sauren Hydrolyse von Feststoffen, der Biogaserzeugung aus gelöstem org. Kohlenstoff und der Biowasserstofferzeugung mit Hilfe bioelektrochemischer Technologien bestehen. Das System wird in Zusammenarbeit zwischen der TU Hamburg und der Firma Popp Feinkost GmbH gebaut und am Industriestandort mit realen Abfallstoffströmen betrieben werden.
Um dem Klimawandel zu begegnen, ist das Ziel, die Technologie für eine stabile, sichere und CO2-neutrale Energieversorgung einer mittelgroßen Stadt am Beispiel von Herzogenrath, inklusive der Industriebetriebe sowie neuen Prosumern in der Stadt, durch dezentrale PV-Anlagen, dezentrale Wärmepumpen und Elektromobilität zu entwickeln. Hierzu sollen digitale Zwillinge des Energiesystems von Herzogenrath und der Industriebetriebe wie des Sandbergwerks und des Klärwerks erstellt werden, sodass deren sicherer Betrieb und CO2-neutrale Energieversorgung gewährleistet und durch Ausnutzung der Sektorenkopplung stabil und sicher betrieben sowie auf geringste Energiekosten optimiert werden kann. Durch niedrige Energiekosten werden die Industriebetriebe wirtschaftlich gestärkt und Haushalte zu sozialverträglichen Preisen versorgt. Das Teilprojekt 'Vermarktungsmöglichkeiten in den Energiemärkten' stellt die Schnittstelle zwischen den anderen Teilprojekten aus dem Gesamtvorhaben 'Energiepark Herzogenrath' dar. Die Dynamiken auf den Energiemärkten sorgen für laufend neue Anforderungen an die Marktteilnehmenden sowie für neue Vermarktungsmöglichkeiten der Produkte Strom, Wärme, Sauerstoff und Wasserstoff in Herzogenrath. Es werden nicht nur die wesentlichen Einflussfaktoren im Energiemarkt und die Vermarktungskanäle in Herzogenrath identifiziert, sondern auch Teilmodule für den Aufbau eines Energiemarktmodells entwickelt. In diesem Zusammenhang werden die energiewirtschaftlichen Anforderungen laufend aktualisiert, sodass mithilfe dieser Teilmodule, welche die Vermarktungsmöglichkeiten dynamisch abbilden und in das Gesamtmodell implementiert werden, aus den lokalen Optima das globale Optimum für Herzogenrath ermittelt werden kann.
| Origin | Count |
|---|---|
| Bund | 3780 |
| Kommune | 5 |
| Land | 229 |
| Wissenschaft | 42 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 288 |
| Daten und Messstellen | 29 |
| Ereignis | 1 |
| Förderprogramm | 3266 |
| Gesetzestext | 280 |
| Kartendienst | 1 |
| Text | 227 |
| Umweltprüfung | 96 |
| unbekannt | 118 |
| License | Count |
|---|---|
| geschlossen | 600 |
| offen | 3322 |
| unbekannt | 105 |
| Language | Count |
|---|---|
| Deutsch | 3825 |
| Englisch | 557 |
| Resource type | Count |
|---|---|
| Archiv | 116 |
| Bild | 3 |
| Datei | 122 |
| Dokument | 272 |
| Keine | 2844 |
| Unbekannt | 2 |
| Webdienst | 10 |
| Webseite | 916 |
| Topic | Count |
|---|---|
| Boden | 2453 |
| Lebewesen und Lebensräume | 2070 |
| Luft | 2196 |
| Mensch und Umwelt | 4027 |
| Wasser | 1691 |
| Weitere | 3679 |