API src

Found 985 results.

Related terms

Biologische Wasserstoffproduktion aus Biomassefeststoffen, Teilvorhaben: Integration des Verfahrens in bestehende Anlagen und Konzepte

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Biologische Wasserstoffproduktion aus Biomassefeststoffen

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Klimaschutzmodellregion Sauerland, Teilvorhaben: Innovative Technologie zur Ammoniumeliminierung und Ammoniakproduktion

Energieeffiziente und CO2-neutrale Stahlproduktion durch Einsatz additiver Fertigung und intelligenter Steuerung im Elektrolichtbogenofen

Elektrolyseure zur Herstellung von Wasserstoff in Nordrhein-Westfalen

Dieser Datensatz enthält eine nicht abschließende Auflistung von Elektrolyseuren zur Herstellung von Wasserstoff innerhalb Nordrhein-Westfalens. Die Herstellung und Verfügbarkeit von Wasserstoff ist für zahlreiche Sektoren wie z.B. die Industrie oder die Energiewirtschaft Voraussetzung für die Erreichung der Klimaschutzziele in 2045.

Kurzinformation_zu_Ablauf_und_Notwendigkeit_von_Genehmigungsverfahren_f%C3%BCr_Produktionsanlagen_i._S._d._NZIA_20250506.pdf

Produktionsanlagen für einige Netto-Null-Technologien sind genehmigungsbedürftig nach dem BImSchG und benötigen damit ein entsprechendes Genehmigungsverfahren. Die Genehmigungsbedürftigkeit von Anlagen ist im Anhang 1 der 4. BImSchV geregelt. So ist in der - Nr. 1 – Wärmeerzeugung, Bergbau und Energie, - Nr. 2 – Steine und Erden, Glas, Keramik, Baustoffe, - Nr. 3 – Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung, - Nr. 4 – Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung, - Nr. 5 – Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen, - Nr. 6 – Holz, Zellstoff, - Nr. 7 – Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse, - Nr. 8 – Verwertung und Beseitigung von Abfällen und sonstigen Stoffen, - Nr. 9 – Lagerung, Be- und Entladen von Stoffen und Gemischen - Nr. 10 – Sonstige Anlagen des Anhang 1 der 4. BImSchV das Genehmigungserfordernis von Anlagen beschrieben, welche unter die Netto-Null-Technologien fallen könnten. Beispielhaft werden folgend Netto-Null-Technologien aus der Liste des Anhangs der EU Verordnung mit dem Anhang 1 der 4. BImSchV in Verbindung gebracht. Wasserstofftechnologien in Form von Anlagen zur Herstellung von Wasserstoff durch die Elektrolyse von Wasser wäre beispielsweise nach Nr. 10.26 des Anhang 1 der 4. BImSchV genehmigungsbedürftig. Technologien für nachhaltiges Biogas und Biomethan könnten beispielsweise nach Nr. 8.6, Nr. 1.15 und/oder Nr. 1.16 des Anhang 1 der 4. BImSchV genehmigungsbedürftig sein. Technologien für erneuerbare Kraftstoffe nicht biogenen Ursprungs könnten nach einer der Nummern im Bereich der chemischen Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (Nr. 4 des Anhang 1 der 4. BImSchV) genehmigungsbedürftig sein. Zum besseren Überblick sind die Abläufe der Genehmigungsverfahren (vereinfachtes und förmliches Verfahren) in dem folgenden Schaubild dargestellt: vor Antragstellung Planung des Vorhabens; Beratung durch die Behörde (Vorgespräche) Antragstellung Antragstellung Festlegung der Verfahrensart (UVP-Prüfung); Antrag; Antragsunterlagen; Vollständigkeitsprüfung Beteiligung Prüfung der Genehmigungsvoraussetzungen, Beteiligung der Fachbehörden; ggf. Öffentlichkeitsbeteiligung Entscheidung Bescheiderstellung im vereinfachten Verfahren 3 Monate, im förmlichen Verfahren 7 Monate nach Vollständigkeit Quelle: Handbuch zum Genehmigungs- und Anzeigeverfahren nach dem Bundes- Immissionsschutzgesetz des LVwA) Im Handbuch zum Genehmigungs- und Anzeigeverfahren nach dem BImSchG sind die einzelnen Abläufe detailliert beschrieben.

Studie des Erzeugungspotentials von grünem Wasserstoff auf der Grundlage erneuerbarer Energien in Zentralasien

Überblick zur Kostenentwicklung von strombasierten erneuerbaren Energieträgern

Das vorliegende Kurzpapier aus dem Forschungsvorhaben „Kriterien für eine nachhaltige Bereitstellung und klimagerechte Integration von strombasierten Energieträgern“ analysiert Studien, die sich mit der Kostenentwicklung von Wasserstoff und Wasserstoffderivaten befassen. Es werden die folgenden strombasierten, erneuerbaren Energieträger betrachtet: Wasserstoff, Ammoniak, Methan, Methanol, Fischer-Tropsch Kraftstoffe und Dimethylether, sowie die fossil basierten Energieträger blauer Wasserstoff und blauer Ammoniak. Die Kosten werden den Prozessen: Wasserstoff-Erzeugung, Derivatsynthese, Transport, sowie Rückwandlung und Verteilung zugeordnet. In einem gesonderten Kapitel wird der Einfluss der Kohlenstoffquelle für die Wasserstoff-Derivatsynthese betrachtet. Für die Analyse der Erzeugungskosten des Wasserstoffs und o.g. Wasserstoffderivate wurden Studien zu folgenden Regionen berücksichtigt: MENA, Subsahara-Afrika, Nordamerika, Südamerika, Australien, Nordeuropa, Iberische Halbinsel, restliches Europa (ohne Deutschland) und Deutschland. Es zeigt sich, dass es auch bei Betrachtung des gleichen Energieträgers aus der gleichen Erzeugungsregion zu teils starken Abweichungen bezüglich aktueller und zukünftiger Produktionskosten kommt. Die lässt sich auf grundlegende, methodische Ansätze der Studien, sowie die darin gesetzten Randbedingungen, z.B. zukünftige Entwicklung einer beteiligten Technik, zurückführen. Alle Ergebnisse sind in der o.g. Aufteilung in Übersichtsgrafiken unter Nennung der jeweiligen Quelle dargestellt. Veröffentlicht in Texte | 96/2025.

Förderprogramm Dekarbonisierung in der Industrie: klimafreundliche Stahlproduktion

Bundesumweltministerin Svenja Schulze hat heute dem Vorstandsvorsitzenden der Salzgitter AG, Prof. H.J. Fuhrmann, einen Förderbescheid in Höhe von über 5 Mio. Euro für ein Projekt zur Herstellung klimafreundlichen Stahls übergeben. Im Beisein des Ministerpräsidenten des Landes Niedersachsen, Stephan Weil, fiel damit auch der offizielle Startschuss des BMU-Förderprogramms 'Dekarbonisierung in der Industrie'. Mit diesem Programm sollen schwer vermeidbare, prozessbedingte Treibhausgasemissionen in den energieintensiven Branchen wie Stahl, Zement, Kalk und Chemie durch den Einsatz innovativer Techniken möglichst weitgehend und dauerhaft reduziert werden. Bundesumweltministerin Svenja Schulze: 'Für ein klimaneutrales Deutschland brauchen wir eine Industrie, die ohne fossile Energie- und Rohstoffe auskommt. Mit unserem neuen Dekarbonisierungsprogramm fördern wir eine grundlegende Neuausrichtung der Produktionsprozesse. Der Klimaschutz wird so zum Innovationstreiber für die Wirtschaft, macht den Industriestandort Deutschland zukunftsfähig und erhält hochqualifizierte Arbeitsplätze. Das Projekt in Salzgitter ist ein wichtiger, erster Schritt in diese Richtung, dem weitere folgen werden. Es zeigt auch, dass wir den Ausbau der erneuerbaren Energien und den Markthochlauf von grünem Wasserstoff beschleunigen müssen, damit wir unsere anspruchsvollen Ziele erreichen können.' Die Anlage der Salzgitter Flachstahl GmbH mit einem Gesamtinvestitionsvolumen von rund 13 Mio. Euro soll innerhalb der nächsten zwei Jahre in Betrieb gehen und zeigen, wie die sukzessive Umstellung eines integrierten Hochofenwerks auf die CO2-arme Stahlerzeugung erfolgen kann. Mit dem von der Salzgitter AG entwickelten Verfahren wird die konventionelle Roheisengewinnung im Hochofen auf die emissionsarme Direktreduktion umgestellt. Beim Einsatz von Wasserstoff aus erneuerbaren Energien wird so die Herstellung von grünem Stahl ermöglicht. Innovative Projekte wie dieses sollen auch als Vorbilder dienen und als Multiplikatoren auf die ganze Branche ausstrahlen. Im Projekt ProDRI soll der flexible Betrieb mit Wasserstoff und Erdgas demonstriert und optimiert werden. Langfristiges Ziel von Salzgitter ist die ausschließliche Nutzung erneuerbaren Wasserstoffs zur Herstellung von grünem Stahl. Steht erneuerbarer Wasserstoff noch nicht in ausreichenden Mengen zur Verfügung, kann auch Erdgas zur Reduktion eingesetzt werden und dabei bereits erhebliche Mengen CO2 gegenüber der herkömmlichen Hochofen-Route einsparen. Die Stahlindustrie war 2019 mit über 36 Mio. Tonnen für etwa 30% der direkten Industrieemissionen in Deutschland verantwortlich. Mit dem Förderprogramm Dekarbonisierung im Industriesektor wird eine Maßnahme des Klimaschutzplans 2050 sowie des Klimaschutzprogramms 2030 umgesetzt. Das BMU wird - vorbehaltlich der Verabschiedung des Bundeshaushalts in der kommenden Woche - über den Energie- und Klimafonds in den kommenden Jahren rund 2 Mrd. Euro zur Verfügung stellen. Text gekürzt

Biogene Wasserstoffproduktion mit innovativer Verteillogistik, Teilvorhaben: Simulation der H2-Herstellung und -Distribution

Das Forschungsprojekt BioH2Log hat zum Ziel, ein innovatives und skalierbares Logistiksystem für Wasserstoff aus Biogasanlagen zu entwickeln, um damit regionale Abnehmer im Schwerlast/ÖNPV-Straßentransportsektor zu versorgen. Zur dezentralen Erzeugung des grünen Wasserstoffs wird die Dampfreformierung von Biogas verwendet. Zu diesem Zweck soll ein übergeordneter digitaler Zwilling - bestehend aus verknüpften Simulationen der einzelnen Elemente der Prozesskette (Produktion, Transport und Abnahme) - erstellt und in einem softwarebasierten Tool umgesetzt werden. Das Tool soll mit Hilfe von KI-Methoden und unter Berücksichtigung der gesamten Prozesskette die einzelnen Elemente optimieren, um die Preise für die Abnehmer attraktiv zu halten. Integraler Bestandteil des Tools ist darauf aufbauend eine Plattform zur Steuerung des Wasserstoff-Handels, welche den Bedarf und die Echtzeit-Daten aus Produktion und Logistik miteinander verknüpft. Die Effizienz von BioH2Log wird unterstützt durch die Verwendung von fortschrittlichen sog. mobilen Tankstellen, deren H2-Druckspeicher sich durch ein geringes Speichergewicht auszeichnen. Die Projektpartner kooperieren mit dem Förderprojekt Bioh2Ref, das die Erprobung der Dampfreformierung von Biogas zum Ziel hat. Der bevorzugt dort erzeugte Wasserstoff wird in BioH2Log-Testkampagnen des Logistiksystem zur Validierung der dynamischen Simulation verwendet. Im Ergebnis soll die Einsatzreife und die Wirtschaftlichkeit von BioH2Log für die regionale Versorgung mit biogenem Wasserstoff demonstriert werden.

1 2 3 4 597 98 99