Das Projekt "Der Einfluss von Licht auf die mikrobielle Eisen(II)-Oxidation in Süßwassersedimenten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Geomikrobiologie.Der biogeochemische Eisenkreislauf stellt ein wichtiges Reaktionsnetzwerk dar, welches einen direkten Einfluss auf umweltrelevante Prozesse in Sedimenten hat. Eisen(II)-oxidierende und Eisen(III)-reduzierende Bakterien kontrollieren zu großen Teilen die (Im)Mobilisierung von Eisen in Sedimenten. Unser klassisches Verständnis vom sedimentären Eisenkreislauf beschreibt, dass die Hauptsubstratquelle (Eisen(II) für Eisen(II)-oxidierende Bakterien die mikrobiellen Eisen(III)-reduktion ist, welcher typischerweise in tieferen Zonen von Redox-stratifizierten Sedimenten ansässig ist. Bislang wurde der Prozess der Eisen(III)-Photoreduktion nicht als signifikante Eisen(II) Quelle in limnische Sedimente betrachtet. In dem beantragten Forschungsprojekt, stellen wir die Hypothese auf, dass die Photoreduktion von Eisen(III) in limnischen Sedimenten eine zusätzliche Eisen(II)-Quelle für Eisen(II)-oxidierende Bakterien in den obersten (teilweise) oxischen und Lichtdurchfluteten Sedimentschichten darstellt. Zu diesem Zweck werden wir hochaufgelöste Licht und geochemische Messungen (O2, gelöstes Fe(II), pH, H2O2) mit Mikrosensoren durchführen und die Eisenmineralogie als Funktion der Lichtqualität (Wellenlänge) und Lichtquantität (Intensität) in Süßwassersedimenten bestimmen. Darüber hinaus werden wir den Einfluss von natürlichen organischen Material auf die Eisen(III)-Photoreduction untersuchen. Zusätzlich werden wir die Rolle von reaktiven Sauerstoffspezies auf die Bioverfügbarkeit von produzierten Eisen(II) in oxischen Sedimenten bestimmen. Dieses Forschungsprojekt untersucht einen Prozess der bislang in Sedimenten vernachlässigt wurde und öffnet die Türen zu einem neuen Verständnis des biogeochemischen Eisenkreislaufs und den assoziierten Eisen(II) Stoffflüssen entlang sedimentärer Redoxgradienten.
Das Projekt "Führen elektrochemische Prozesse in der Eisphase in hochreichender Konvektion zur Bildung von Partikeln in der oberen Troposphäre?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.
Das Projekt "ACTRIS-D National Facilities, Phase 1, Teilprojekt 8 (BUW-NF): Implementierung der BUW National Facility" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Physik, Institut für Atmosphären- und Umweltforschung.
Das Projekt "Untersuchungen ueber den Einfluss von Wasserstoffperoxid als Sauerstofftraeger auf Mikroorganismen des Belebtschlammes" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft.
Das Projekt "Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Seit 1992 und dem ersten Erdgipfel haben verschiedene Länder erkannt, dass durch menschliche Aktivitäten das Klima stark beeinflusst wird, und sie planten, dieses Problem im Rahmen einer internationalen Konvention anzugehen. So brachten COPs (Conference of parties) viele Länder unter der Schirmherrschaft der Vereinten Nationen zusammen, um sich gegenseitig zu verpflichten, dieses Problem zu lösen. Bevor jedoch sinnvolle Maßnahmen ergriffen werden können, ist es wichtig, dass sich Wissenschaftler auf der ganzen Welt zusammentun, um für die Politik nützlichen Daten bereitzustellen. In diesem Zusammenhang wird das REACTE-Projekt vorgeschlagen, an dem international anerkannte französische und deutsche Forscher in jeweils sehr komplementären wissenschaftlichen Bereichen tätig sind.Die Atmosphäre ist ein komplexes und hoch reaktives System, in dem viele bio-physikochemische Prozesse ablaufen. Deshalb ist es von entscheidender Bedeutung, dieses System gut zu verstehen und zu wissen, wie es sich als Reaktion auf die verschiedenen Belastungen entwickelt, denen es ausgesetzt ist. Einer der wichtigsten Punkte ist daher die Kenntnis der Reaktionsfähigkeit eines solchen Systems in Abhängigkeit von den vorhandenen Spezies. Redoxreaktionen gehören zu den wichtigsten Transformationspfaden, die berücksichtigt werden müssen, um die Entwicklung der Atmosphäre besser zu verstehen. Das REACTE-Projekt konzentriert sich auf die (Photo-) Chemie von Übergangsmetallen (TMIs), die eine Hauptquelle für hochreaktive Spezies in Aerosolen und der wässrigen Phase troposphärischer Wolken darstellt. Tatsächlich gibt es derzeit nur sehr wenige Daten über die genaue Rolle und Reaktivität dieser Metalle, die derzeit fast ausschließlich in freier Form betrachtet werden, während bekannt ist, dass sie in natürlicher Umgebung als Komplexe vorliegen. Das REACTE-Projekt konzentriert sich auf die Beantwortung folgender Fragen: i) Wie beeinflusst die Komplexierung von TMIs deren Photoreaktivität, deren Redoxreaktionen und/oder die "Fenton"-Typ-Reaktionen mit H2O2? ii) Welche reaktiven Spezies werden mit diesen Reaktionen assoziiert, H2O2, HyOx Radikale und ihre jeweiligen Bildungsausbeuten? Welchen Einfluss haben sie auf die Oxidationskapazität der Atmosphäre und damit auf die chemische Zusammensetzung im Allgemeinen? Diese Ergebnisse werden in einen Modellmechanismus zu Prozessierung von chemischen Radikalreaktionen in wässriger Phase (CAPRAM) implementiert werden, um den Einfluss auf die Transformation organischer Stoffe, die HOx-Bilanz und den Oxidationszustand von TMIs in atmosphärischen Tröpfchen oder Aerosolen vorherzusagen. Das REACTE-Projekt verbindet komplementäre wissenschaftliche Kompetenzen, und ermöglicht damit die TMIs-Komplexchemie besser zu verstehen, sowie ihren Einfluss auf die Atmosphärenchemie zu erfassen. Es wird Daten liefern, um die Auswirkungen auf das Klima bzw. auf die Luftverschmutzung zu verstehen und abzuschätzen, welche derzeit stark unterschätzt werden.
Das Projekt "Zwei-Schritt Photokatalysatoren für die integrierte Produktion von solaren Energieträgern, SINATRA: SolSTEP - Zwei-Schritt Photokatalysatoren für die integrierte Produktion von solaren Energieträgern" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Technische Chemie und Umweltchemie - Center for Energy and Environmental Chemistry.
Das Projekt "Zwei-Schritt Photokatalysatoren für die integrierte Produktion von solaren Energieträgern" wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Technische Chemie und Umweltchemie - Center for Energy and Environmental Chemistry.
Das Projekt "Möglichkeiten zur Kontrolle der Wurzeltöterkrankheit (Rhizoctonia solani) im ökologischen Kartoffelbau" wird/wurde ausgeführt durch: Universität Bonn, Institut für Organischen Landbau.Ökologisch erzeugtes Pflanzgut ist häufig mit Sklerotien von R. solani kontaminiert. Mögliche Folgen sind verzögerter Auflauf, Knollendeformationen und dry core Symptom. Durch gezielte Kombination aus Dekontamination der durch Befeuchtung in Keimung gebrachten Sklerotien mit einer stabilisierten Wasserstoffperoxidlösung und anschließender Inokulation mit einem spezifischen T. harzianum Stamm soll das Befallspotential signifikant reduziert werden. Die Feldversuche laufen im ersten Jahr.
Das Projekt "Ökophysiologie polarer Algen: Wechselwirkungen zwischen Bakterien und Eisdiatomeen insbesondere beim Oxidationsschutz" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Fachbereich 2 Biologie,Chemie.Bei zahlreichen Stoffwechselvorgängen in Organismen kommt es zur Bildung von reduzierten Sauerstoffformen wie Wasserstoffperoxid, Superoxidanionen oder des Hydroxylradikals. Marine Eisdiatomeen bilden zusammen mit anderen Mikroorganismen im Packeis in den Salzlaugenkanälchen eine eigenständige Meereisgesellschaft. Diese Kanälchen zeichnen sich durch extreme Umweltbedingungen aus (Licht, Salinität, Temperatur, hohe Zelldichten), die eine vermehrte Bildung von aktivierten Sauerstoff Spezies begünstigen. Bei Untersuchungen zum Oxidationsschutz der Eisdiatomee Enteromoneis kufferathii MANGUIN wurde festgestellt, dass diese in Gesellschaft mit epiphytisch lebenden Bakterien vorkommen. Die Ergebnisse ergaben, dass die Bakterien maßgeblich an der Entgiftung der Oxidantien beteiligt sein können, so dass die Vermutung einer symbiotischen oder kommensalistischen Beziehung naheliegt. Es soll die Art der Bakterien/Algen-Wechselwirkung näher untersucht und der jeweilige Anteil an Oxidationsschutzsystemen (enzymatisch oder durch Schutzsubstanzen) überprüft werden, um die These vom gegenseitigen Schutz vor Sauerstoffradikalen zu überlegen. Die Bakterien werden charakterisiert und ihr Einfluss auf das Wachstum von E. Kufferathii und anderen Algen der Eislaugengesellschaft wird untersucht. Elektonenmikroskopische Aufnahmen (TEM/REM/LSM) sollen Aufschluss über die Art des Kontaktes zwischen Algen und Bakterien geben.
Das Projekt "Oxidativer Abbau von Halogenbenzolen mit Fentons-Reagens" wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Organische Chemie.Halogenbenzole, wie z.B. Chlorbenzol etc. werden in waessriger Suspension mit H2O2/Fe-Ionen umgesetzt. Die Oxidationsprodukte werden mittels GC/MS bestimmt. Ziel der Arbeit ist die Entwicklung eines Verfahrens zur Zerstoerung von Halogenbenzolen, deren Entsorgung derzeit durch Verbrennung problematisch ist. Eine Untersuchung der biologischen Abbaubarkeit der erhaltenen waessrigen Loesungen der Oxidationsprodukte wird angestrebt.
Origin | Count |
---|---|
Bund | 321 |
Land | 9 |
Type | Count |
---|---|
Chemische Verbindung | 15 |
Förderprogramm | 296 |
Text | 13 |
Umweltprüfung | 2 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 25 |
offen | 301 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 316 |
Englisch | 28 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 7 |
Keine | 274 |
Webseite | 48 |
Topic | Count |
---|---|
Boden | 227 |
Lebewesen & Lebensräume | 232 |
Luft | 205 |
Mensch & Umwelt | 327 |
Wasser | 272 |
Weitere | 303 |