s/water samples/water sample/gi
During the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), Hai24VE2 (24.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025), CTDs were deployed and sediment corers were retrieved at 99 stations in Kiel Bight in the southwestern Baltic Sea. Water column oxygen concentrations were determined using oxygen sensors attached to the CTD framework. At selected water depths, water samples were collected with Niskin bottles for the analysis of nitrate concentrations using an autoanalyzer. Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). Bottom waters were sampled from the supernatant water in the sediment cores. Solid phase sediment samples were analyzed for total organic carbon using an element analyzer. Porewater was extracted from the sediment cores using rhizones and analyzed for total alkalinity (titration), ammonium (photometer), sulfate (ion chromatography), hydrogen sulfide (photometer), dissolved iron (ICP-OES) and dissolved manganese (ICP-OES). The collected data will be used to (i) determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
Konzeptionen der Schadstoffmessung, einschliesslich und Strahlen.
Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami
Mit einer neuen Kombinationsstechnik aus Chromatographie und Flammen-AAS ist die vollautomatische Trennung und Bestimmung von Cr(III)/Cr(VI) in Abwasserproben in nur einer Minute moeglich. Dies wird durch ein im Institut fuer Spektrochemie und Angewandte Spektroskopie integriertes Chromatographie-/Zerstaeubungssystem erreicht, wobei zur Datenauswertung eine Standard-Chromatographie-Software benutzt wird.
Die Badestellenkarte enthält aktuelle Angaben zur Badegewässerqualität für 2024 und zu ihrer Einstufung an den ausgewiesenen Badestellen an Badegewässern des Landes Brandenburg. Während der Badesaison vom 15. Mai bis 15. September eines jeden Jahres werden die Daten und Informationen täglich aktualisiert. Neben den Angaben zu gesundheitlich relevanten mikrobiologischen Parametern und aktuellen Überwachungsergebnissen der Wasserproben wird auch über die aktuelle Sichttiefe, über mögliche Algenmassenentwicklungen oder Blaualgenbelastungen mit Warnhinweisen sowie über die Beschaffenheit und Ausstattung der Badestelle wie z.B. Einrichtungen der Deutschen Lebens-Rettungs-Gesellschaft (DLRG), Gastronomie, sanitäre Einrichtungen und Abfallentsorgung informiert. Jede Badestelle ist mit einem Foto abgebildet. Die Badestellen und deren Umgebung können bis zu einer Auflösung der Topographischen Landkarte im Maßstab von 1:10.000 dargestellt und ausgedruckt werden.
Grain size composition of loess samples from LGM European loess sequences. Loess samples of about 200 g were prepared to extract the grain size fractions studied. Grain size separations were performed on at least 10 g of dry sample. First, the entire sample was sieved with demineralized water on 63 microns and 20 microns sieves. The rejects were collected, dried and weighed. The clay fraction was obtained by decanting the fraction below 20 microns. The rest of the sample was mixed and left to settle for 1 hour. This procedure is repeated until a transparent supernatant is obtained. The two fractions thus obtained are dried and weighed. The size of the different fractions was then checked by laser granulometry.
In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Partikel in den Größen von wenigen Mikrometern bis in den makromolekularen Bereich kommen in allen natürlichen (Grund-)Wässern vor. Durch ihre Beweglichkeit können sie die Mobilität solcher partikelgebundener Substanzen entscheidend erhöhen, die in wässrigen Lösungen sonst schwer- oder unlöslich sind (v.a. Schwermetalle und PAK). Da Partikel und Kolloide sensibel auf Milieuveränderungen reagieren, untersucht diese Arbeit die Auswirkungen, die die Entnahme von Wasserproben aus dem Aquifer und der anschließende Umgang mit den Proben auf den Partikelinhalt hat. Ziel ist die Entwicklung eines praxistaun aber noch relativ schonenden Verfahrens, das anschließend an Grundwässern aus verschiedensten Lithologien erprobt werden soll. Vor allem im Hinblick auf Schadstoffmobilitäten ist es nötig, zukünftige Partikelbewegungen unter geänderten Rahmenbedingungen einschätzen glichezu können. Dafür sollen Faktoren, die Partikelvorkommen und -bewegung im Untergrund steuern, identifiziert werden. Dies soll zukünftig eine Simulation der Partikelbewegung im Untergrund ermöglichen.
Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher
Es werden Luft-, Wasser- und sonstige fluessige und feste Proben untersucht. Die Arbeiten zielen darauf ab, die Empfindlichkeit des Nachweises zu verbessern und die Transportwege der kuenstlichen Radionuklide in der Umwelt zu verfolgen.
| Origin | Count |
|---|---|
| Bund | 827 |
| Kommune | 46 |
| Land | 2219 |
| Wirtschaft | 4 |
| Wissenschaft | 568 |
| Zivilgesellschaft | 29 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2596 |
| Ereignis | 5 |
| Förderprogramm | 715 |
| Taxon | 10 |
| Text | 150 |
| Umweltprüfung | 1 |
| unbekannt | 133 |
| License | Count |
|---|---|
| geschlossen | 196 |
| offen | 3340 |
| unbekannt | 64 |
| Language | Count |
|---|---|
| Deutsch | 2930 |
| Englisch | 748 |
| Resource type | Count |
|---|---|
| Archiv | 2155 |
| Bild | 17 |
| Datei | 452 |
| Dokument | 95 |
| Keine | 596 |
| Unbekannt | 16 |
| Webseite | 2419 |
| Topic | Count |
|---|---|
| Boden | 3219 |
| Lebewesen und Lebensräume | 3334 |
| Luft | 2874 |
| Mensch und Umwelt | 3600 |
| Wasser | 3476 |
| Weitere | 3580 |