Darstellung der Wehre, die als wasserbauliche Maßnahme zum Aufstauen von Gewässern vorgesehen sind. Wehre sind nicht für das ganze Saarland erfasst. Attribute: GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer DREHUNG: Winkelangabe für die Kartendarstellung OBJEKTNAME: Name des Objekts
Dieser INSPIRE Datensatz beinhaltet das Gewässernetz des Saarlandes. Die Transformation erfolgte gemäß den INSPIRE Richtlinien Hydrographie in der Version 4.0. Folgende Anwendnungsschemen werden derzeit zu diesem Thema bereitgestellt: * Hydrographie Physical Waters * Hydrographie Networks Das Schema Hydrographie Physical Waters Das Anwendungsschema von Physical Waters dient hauptsächlich zum Erstellen von Basiskarten für die Hydrographie. Die Auswahl von Feature-Klassen in diesem Paket basiert sowohl auf den Anforderungen zum Zuordnen bestimmter Objekte als auch auf der Notwendigkeit, bestimmte Objekte nach einem Modellierungsaspekt zu unterscheiden. Infolgedessen werden bestimmte Merkmale der "realen Welt" in einer einzigen Klasse zusammengefasst, wenn festgestellt wurde, dass sie weder aus Sicht der Kartierung noch aus Sicht der Modellierung unterschieden werden müssen. Folgende Gruppen von Objekten können unterschieden werden: * Natürliche Wasserobjekte, die Teil des hydrologischen Netzwerks sind, wie Wasserläufe, stehendes Wasser, Feuchtgebiete usw. * Objekte, die die physikalischen Wasserobjekte beschreiben (Ufer, Uferlinien) * Gebiete, in denen das Wasser aufgefangen wird (Flussbecken / Entwässerungsbecken) * Hydrographische Interessenspunkte. Punkte, die den Wasserfluss im Gewässernetz beeinflussen und auf Karten erscheinen, aber keine künstlichen Objekte sind (z. B. Stürze, Quellen und Sickerungen usw.). * Künstliche Objekte. Alle Objekte, die auf der Karte angegeben werden müssen und eine Beziehung zum Wassernetz haben (z.B. Böschungen, Kanäle, Schleusen, Dämme und Wehre). Das Schema Hydrographie Networks Für die Modellierung werden zusätzliche Informationen (z. B. geschlossenes Netzwerk, bestimmte Attribute) benötigt, die nicht unbedingt für eine Hintergrundkarte benötigt werden. Diese zusätzliche Information sowie das Netzwerkmodell selbst sind daher in einem separaten Anwendungsschema enthalten, das als Erweiterung der physikalischen Gewässer angesehen werden kann. Wenn nur ein Netzwerkmodell beim Datenbereitsteller verfügbar ist, ist es möglich, das Netzwerk zu beschreiben, ohne direkt auf physische Objekte zu verweisen. Aus diesem Grund enthalten räumliche Objekte sowohl im Netzwerkmodell als auch in den physikalischen Hydrographie-Schemen ihre eigenen Geometrien.
Messstelle betrieben von STANDORT STUTTGART.
Messstelle betrieben von STANDORT STUTTGART.
Messstelle betrieben von STANDORT STUTTGART.
Messstelle betrieben von STANDORT STUTTGART.
Abflussprognosen zur Bewältigung von Extremwetterlagen Um das Transportaufkommen in Deutschland auch unter schwierigen Bedingungen zu bewältigen und dies aufrecht zu erhalten bzw. zu steigern, sind verkehrsträgerübergreifende Lösungsansätze notwendig. Ziel dieses Projekt ist es, die Resilienz und die Verfügbarkeit des Verkehrsträgers Wasserstraße bei extremen Wetterereignissen zu erhöhen. Aufgabenstellung und Ziel Etwa 3.000 km der Bundeswasserstraßen sind mit Staustufen ausgebaut, die meist aus einem beweglichen Wehr, einer Schleuse und einem Laufwasserkraftwerk bestehen. Durch das Ändern des Abflusses über das Kraftwerk und über das Wehr hält ein lokaler Regler den gewünschten Oberwasserstand innerhalb der vorgegebenen Stauzieltoleranz. Die Abfluss- und Stauregelung soll dabei mehrere, mitunter gegensätzliche Ziele erfüllen: Einhaltung des Stauziels innerhalb der festgelegten Toleranz, Verminderung von Abflussschwankungen, optimale Nutzung der Wasserkraft und Minimierung des Verschleißes der Wehrverschlüsse. Im Zuge des Klimawandels ist mit einer Zunahme extremer Wetterereignisse zu rechnen. Die Abfluss- und Stauregelung steht gerade in Niedrigwasserperioden vor wachsenden Herausforderungen. Schwankungen des Abflusses sind in diesen Phasen schwierig auszugleichen und Über- bzw. Unterschreitungen der Stauzieltoleranz sind nicht auszuschließen. Dadurch entsteht eine Gefahr für die Schifffahrt. Ziel des vorgestellten Vorhabens ist es, anhand einer fundierten Datenanalyse und der Methode des maschinellen Lernens Zusammenhänge zwischen Niederschlagsereignissen und Abflussschwankungen vertieft zu untersuchen. Zusätzlich sollen Abflussprognosen erstellt werden, welche die Abfluss- und Stauregelung unterstützen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Die Verwendung maschinellen Lernens für Abflussvorhersagen auf der Basis von Niederschlags- und Zuflussdaten stellt ein vielversprechendes Werkzeug für die WSV dar. Prognosen schaffen einen vorausschauenden Handlungsspielraum für die Abfluss- und Stauregelung, sodass starke Wasserstandsund Abflussschwankungen minimiert und damit die Sicherheit und Leichtigkeit der Schifffahrt erhöht werden. Die Resilienz der Wasserstraße wird dadurch auch unter den zunehmenden Auswirkungen des Klimawandels gesteigert. Untersuchungsmethoden Das Verfahren wird exemplarisch an einer Stauhaltung der Mosel getestet. Die Niederschlagsdaten des Einzugsgebiets der Stauhaltung werden vom Deutschen Wetterdienst im Rahmen der Zusammenarbeit im BMDV-Expertennetzwerk bereitgestellt. Die Pegeldaten der oberliegenden Stauhaltung sowie die der untersuchten Stauhaltung selbst werden von der WSV zur Verfügung gestellt. In einem ersten Schritt werden die Pegeldaten untersucht. Anhand einer Kreuzkorrelation können Abhängigkeiten zwischen dem oberliegenden Pegel und dem Pegel in der untersuchten Stauhaltung aufgezeigt werden. In einem weiteren Schritt werden ebenfalls die Niederschlags- und Wehrdaten betrachtet und deren Zusammenhang mit den Pegeldaten untersucht. Zusätzlich wird eine Methode erarbeitet, um Wasserstandsschwankungen so zu filtern, dass die Werte möglichst unbeeinflusst von Schleusungen und Schifffahrt sind. Im Anschluss an die Aufbereitung der Daten wird nach einer geeigneten Methode des Maschinellen Lernens (ML) gesucht. Dabei werden unterschiedliche ML-Modelle in Python implementiert und trainiert. Der vielversprechendste Modelltyp soll weiter genutzt und mit unterschiedlichen Parametrierungen getestet werden. Hierbei wird immer auf einen Prognosezeitraum von drei Stunden hingearbeitet. Für die Abfluss- und Stauregelung ist eine dreistündige Prognose wünschenswert, um Schwankungen des Abflusses effektiv zu bewältigen.
Im Rahmen des Hochwasserschutzkonzeptes Nr. 5 (Verbesserung des Hochwasserschutzniveaus im Müglitztal) beabsichtigt der Betrieb Oberes Elbtal der Landestalsperrenverwaltung des Freistaates Sachsen die Errichtung eines ökologisch durchgängigen Hochwasserrückhaltebeckens (HRB). Im Osterzgebirge, ungefähr 5,0 km südlich der Ortslage Glashütte, wird dazu ein begrünter Steinschüttdamm mit Asphaltkerndichtung geplant, welcher die Biela im Hochwasserfall noch oberhalb der Mündung in die Müglitz stauen soll. Im Modellversuch sollen zwei Anlagenteile auf ihre hydraulische Leistungs- und Funktionsfähigkeit getestet werden, der Gewässerdurchlass sowie die Hochwasserentlastungsanlage (HWE). Zur Durchleitung der Biela dient ein (b x h) 4,0 x 4,5 m, mit natürlichem Sohlsubstrat versehener Durchlass, der im Hochwasserfall verschlossen werden kann. Während eines Hochwasserereignisses wird stattdessen das Wasser über eine Bypassleitung mit integrierter Gegenstromtoskammer in Dammmitte abgeführt und über ein Wehr wieder in den Gewässerdurchlass eingeleitet. Der Abfluss der Bypassleitung wird über zwei parallel angeordnete Betriebsschützen geregelt. Im Modellversuch (Teilmodell 1) wird die im Damminneren angeordnete Gegenstromtoskammer im Maßstab 1:12 nachgebildet, untersucht und optimiert. Das Teilmodell 2 ist eine im Maßstab 1:20 verkleinerte Nachbildung der geplanten HWE, einer einseitig angeströmten Hangseitenentlastung, bestehend aus dem Einlaufbauwerk, der Sammel-, Übergangs- und Schussrinne, dem räumlichen Tosbecken sowie dem Unterwasserbereich.
Dieser Inhalt beschreibt die Pegelmessstation "WER Wehr Stockum OW" mit der ID 23011. Sie wird betrieben von der EGLV (Emschergenossenschaft Lippeverband) und misst den Wasserstand. Sie befindet sich am Fluss Lippe.
Dieser Inhalt beschreibt die Pegelmessstation "WER Wehr Stockum UW" mit der ID 24011. Sie wird betrieben von der EGLV (Emschergenossenschaft Lippeverband) und misst den Wasserstand. Sie befindet sich am Fluss Lippe.
| Origin | Count |
|---|---|
| Bund | 511 |
| Kommune | 2 |
| Land | 776 |
| Wissenschaft | 4 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 145 |
| Ereignis | 1 |
| Förderprogramm | 202 |
| Infrastruktur | 5 |
| Kartendienst | 2 |
| Taxon | 12 |
| Text | 363 |
| Umweltprüfung | 178 |
| WRRL-Maßnahme | 127 |
| unbekannt | 235 |
| License | Count |
|---|---|
| geschlossen | 629 |
| offen | 591 |
| unbekannt | 30 |
| Language | Count |
|---|---|
| Deutsch | 1243 |
| Englisch | 186 |
| andere | 52 |
| Resource type | Count |
|---|---|
| Archiv | 13 |
| Bild | 52 |
| Datei | 120 |
| Dokument | 358 |
| Keine | 580 |
| Unbekannt | 15 |
| Webdienst | 22 |
| Webseite | 251 |
| Topic | Count |
|---|---|
| Boden | 508 |
| Lebewesen und Lebensräume | 783 |
| Luft | 393 |
| Mensch und Umwelt | 1250 |
| Wasser | 907 |
| Weitere | 1115 |