This project aims at the improvement and testing of a modeling tool which will allow the simulation of impacts of on-going and projected changes in land use/ management on the dynamic exchange of C and N components between diversifying rice cropping systems and the atmosphere and hydrosphere. Model development is based on the modeling framework MOBILE-DNDC. Improvements of the soil biogeochemical submodule will be based on ICON data as well as on results from published studies. To improve simulation of rice growth the model ORYZA will be integrated and tested with own measurements of crop biomass development and transpiration. Model development will be continuously accompanied by uncertainty assessment of parameters. Due to the importance of soil hydrology and lateral transport of water and nutrients for exchange processes we will couple MOBILE-DNDC with the regional hydrological model CMF (SP7). The new framework will be used at field scale to demonstrate proof of concept and to study the importance of lateral transport for expectable small-scale spatial variability of crop production, soil C/N stocks and GHG fluxes. Further application of the coupled model, including scenarios of land use/ land management and climate at a wider regional scale, are scheduled for Phase II of ICON.
Das hier beantragte Wissenstransferprojekt soll die Anwendungsreife von Ergebnissen aus zwei früheren DFG-Forschungsprojekten zu Wasserbewirtschaftungsfragen in semi-ariden Regionen erreichen. Der Fokus wird dabei auf der Methodenübertragung und Ergebnisnutzung für die Entwicklung eines Dürrevorhersage und -managementsystems liegen. Die hier erwähnten DFG-Projekte sind: Sediment Export from large Semi-Arid catchments: Measurements and Modelling), und Generation, transport and retention of water and suspended sediments in large dryland catchments: Monitoring and integrated modelling of fluxes and connectivity phenomena. Der Praxispartner ist die Behörde für Meteorologie und Wasserressourcen des Bundesstaates Ceara (FUNCEME) im Nordosten Brasiliens. Diese führt auch Prognosen für das wasserwirtschaftliche System Cearas durch, welches durch eine stark negative klimatische Wasserbilanz und mehrere tausend (meist kleine) Stauseen gekennzeichnet ist. Es ist vorgesehen, das existierende Wasserbewirtschaftungssystem SIGA von FUNCEME mit dem prozessbasierten hydrologischen Modell WASA-SED zu kombinieren. Das WASA-SED Modell, welches aus den o.g. DFG-Projekten stammt, wurde spezifisch für semiaride meso-skalige Einzugsgebiete konzipiert und entwickelt. Damit werden die charakteristischen hydrologischen Prozesse, einschließlich von Transport- und Konnektivitätsphänomenen im Gewässernetz und den Stauseen simuliert. Die geplanten Arbeiten sind in verschiedene Ebenen gruppiert: (1) Integration des WASA-SED-Modells mit dem SIGA-System um den regionalen Wasserbehörden und Flussgebietskommissionen eine direkte Information über aktuelle und prognostizierte Werte der Stauseefüllungen, Abflüsse an bestimmten Flussabschnitten und anderen Wasserressourcen zu ermöglichen; (2) Effiziente Kommunikation der Ergebnisse mit verschiedenen Stakeholdergruppen und Möglichkeit zur Weiternutzung der Ergebnisse. (3) Anwendung von WASA-SED im Vorhersagemodus, d.h. Nutzung von kurzfristigen und saisonalen meteorologischen Vorhersagen zur Prognose der Wasserverfügbarkeit bei unterschiedlichen Vorhersagezeiträumen. (4) Nutzung der prozess-basierten Struktur von WASA-SED um Effekte sich ändernder Randbedingungen zu untersuchen, besonders bzgl. des dichten Netzes aus Stauanlagen. Wir erwarten aus dem Projekt auch Impulse für neue Forschungsfragen als Ergebnis der Integration der Wasserbewirtschaftung und -infrastruktur in das Modellsystems, so evtl.: (1) Untersuchung und Modellierung der saisonalen Dynamik der Verluste in semiariden Flusssystemen und Ableitung eines dafür geeigneten Abflussroutingansatzes; (2) Quantifizierung und Modellierung der hydro-sedimentologischen Konnektivität in komplexen, vom Menschen stark geformten Hydrosystemen, einschließlich der Effekte des dichten Stauseenetzes, Wasserüberleitungen und der teilweise künstlich verbundenen Teileinzugsgebiete.
To overcome the limitation in spatial and temporal resolution of methane oceanic measurements, sensors are needed that can autonomously detect CH4-concentrations over longer periods of time. The proposed project is aimed at:- Designing molecular receptors for methane recognition (cryptophane-A and -111) and synthesizing new compounds allowing their introduction in polymeric structure (Task 1; LC, France); - Adapting, calibrating and validating the 2 available optical technologies, one of which serves as the reference sensor, for the in-situ detection and measurements of CH4 in the marine environments (Task 2 and 3; GET, LAAS-OSE, IOW) Boulart et al. (2008) showed that a polymeric filmchanges its bulk refractive index when methane docks on to cryptophane-A supra-molecules that are mixed in to the polymeric film. It is the occurrence of methane in solution, which changes either the refractive index measured with high resolution Surface Plasmon Resonance (SPR; Chinowsky et al., 2003; Boulart et al, 2012b) or the transmitted power measured with differential fiber-optic refractometer (Boulart et al., 2012a; Aouba et al., 2012).- Using the developed sensors for the study of the CH4 cycle in relevant oceanic environment (the GODESS station in the Baltic Sea, Task 4 and 5; IOW, GET); GODESS registers a number of parameters with high temporal and vertical resolution by conducting up to 200 vertical profiles over 3 months deployment with a profiling platform hosting the sensor suite. - Quantifying methane fluxes to the atmosphere (Task 6); clearly, the current project, which aims at developing in-situ aqueous gas sensors, provides the technological tool to achieve the implementation of ocean observatories for CH4. The aim is to bring the fiber-optic methane sensor on the TRL (Technology Readiness Level) from their current Level 3 (Analytical and laboratory studies to validate analytical predictions) - to the Levels 5 and 6 (Component and/or basic sub-system technology validation in relevant sensing environments) and compare it to the SPR methane sensor, taken as the reference sensor (current TRL 5). This would lead to potential patent applications before further tests and commercialization. This will be achieved by the ensemble competences and contributions from the proposed consortium in this project.
The provided dataset consists of double differential slant delays and absolute zenith wet delays in the region of the Upper Rhine Graben. Basis is the SLC data from Sentinel 1A+B satellites provided by the Copernicus program. 169 scenes were processed which had been acquired between April 2015 and July 2019, including data of four specific study events (11 – 22 Apr 2016, 13 – 24 Jul 2018, 16 – 31 Oct 2018, 06 – 21 Jan 2017). Interferometric processing was performed using the software SNAP, continued by a Persistent Scatterer Interferometric SAR (PS-InSAR) processing, using the program StaMPS. The first product are double differential slant delays which represent the phase delay in radiant in the satellites line of sight between the master acquisition (17 Mar 2012) and each acquisition-date respectively. Further processing uses ERA5 zenith wet delay (ZWD) and mean temperature to infer absolute zenith wet delays. A mean value is subtracted for each scene, resulting in an absolute value correction. In addition, long wavelength components are corrected by fitting the trend over the scene for each date to a 2D polynomial approximation from the ERA5 data, as those parts cannot reliably be estimated solely from the SAR data. The final product for every scene is the integrated water vapor (IWV) in kg/m² for each acquisition date at the distributed PS-points – on average about 50 points per square kilometer.
Recyceln statt wegwerfen, dies gilt auch für die Weiternutzung von gut erhaltenern Gebrauchsgegenständen. Hier werden berlinweit Einrichtungen gelistet, die verschiedene noch gebrauchsfähige Güter entgegennehmen und an Bedürftige weiter vermitteln.
Mit der Studie wurde erst begonnen. Es soll ein Weg gefunden werden, Hausmuell nach einer Vorbehandlung wie z.B. Rotte, Verbrennung, nach verschiedenen Komponenten zu sichten und diese Komponenten als Werkstoffe dem Bauwesen zuzufuehren.
Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen. Der Fokus des wbks liegt einem Demonstrator für die automatisierte Demontage unter Berücksichtigung der genannten Herausforderungen. Der Demonstrator bildet Aspekte der Handhabung und Qualitätssicherung ab und ist für verschiedene Stackdesigns befähigt.
Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.
Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.
Eine Substitution fossiler durch biogene Rohstoffe für stoffliche Anwendungen ist ein maßgeblicher Schritt zur Reduktion der anthropogenen CO2 Emissionen. Dabei sollte Biomasse im Sinne der Bioökonomie möglichst ganzheitlich und effizient genutzt werden, um die Flächeneffizient und den Beitrag zur Eindämmung des Klimawandels zu maximieren. Die hochwertige Verwendung von bisher kaum genutzten landwirtschaftlichen Reststoffen ist eine vielversprechende Methode zur Effizienzsteigerung. Die stoffliche Nutzung von Agrarreststoffen ist allerdings problematisch. Biogene Stoffe haben stets eine schwankenden Produktqualität. Deshalb ist eine Vorbehandlung und Auftrennung der Reststoffe auf verwertbare Bestandteile notwendig und ein entscheidender Schritt für die Weiternutzung. Deutschland und Taiwan stellen zwei Technologieführer mit hohem Umweltbewusstsein in ihrer jeweiligen Klimazone dar. Deutschland befindet sich in der gemäßigten Klimazone, während Taiwan sich in der (sub-)tropischen Klimazone befindet. Besonders vielversprechende landwirtschaftliche Reststoffe, die sich für eine stofflich Nutzung eignen und daher untersucht werden sollen, sind in der gemäßigten Klimazone Getreidestroh und in der (sub-)tropischen Klimazone Kakao- und Bananenschalen, sowie Reisstroh. Zudem fallen Tomatenpflanzenreste in beiden Klimazonen an. Im angestrebten Projekt wird der landwirtschaftliche Reststoff zunächst in einem hydrothermalen Aufbereitungsverfahren aufgeschlossen, um die anaerob kaum abzubauenden Fasern von den sehr gutvergärbaren Bestandteilen zu trennen. Dies wird in Deutschland mittels Thermodruckhydrolyse realisiert und in Taiwan mittel Überkritischer Wassermethode. Anschließend folgt eine Auftrennung in einem Flüssig/Fest-Separator. Der faserreiche Feststoff soll als Torfersatzprodukt und als Substrat zur mikrobiellen Zelluloseproduktion genutzt werden. Torf findet insbesondere im Gartenbau Anwendung, da er diverse Vorteile besitzt. Allerdings bildet sich Torf in Mooren nur sehr langsam und zur Gewinnung müssen die CO2-bindende Moore entwässert werden. Im Projekt soll untersucht werden in wie weit die produzierten Fasern Torf ersetzen können. Ein zweiter zu untersuchender Ansatz im Projekt ist es die Feststofffraktion als Nährmedium für Bakterienkulturen zu verwenden, die gezielt mikrobielle Zellulose produzieren. Die Flüssigkeit soll mithilfe innovativer zweistufiger Biogasanlage energetisch genutzt werden soll. Die Nutzung der Organik zur Biogasproduktion soll die Prozessenergie der energieintensiven Aufbereitung bereitstellen. Der TS-Gehalt der flüssigen Fraktion ist sehr gering, was bei herkömmlichen volldurchmischten Reaktoren eine lange Verweilzeit und somit ein sehr großes Reaktorvolumen verursacht. Um diese Nachteile zu reduzieren, sollen im Projekt zweistufige Reaktorsysteme untersucht werden. Während in Taiwan beide Fermenter volldurchmischt betrieben werden, wird in Deutschland der Methanreaktor als Festbettfermenter ausgeführt.
| Origin | Count |
|---|---|
| Bund | 603 |
| Europa | 1 |
| Global | 1 |
| Land | 65 |
| Wissenschaft | 12 |
| Zivilgesellschaft | 9 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 485 |
| Gesetzestext | 1 |
| Text | 115 |
| Umweltprüfung | 11 |
| unbekannt | 69 |
| License | Count |
|---|---|
| geschlossen | 148 |
| offen | 519 |
| unbekannt | 19 |
| Language | Count |
|---|---|
| Deutsch | 490 |
| Englisch | 230 |
| Resource type | Count |
|---|---|
| Archiv | 17 |
| Bild | 2 |
| Datei | 18 |
| Dokument | 74 |
| Keine | 478 |
| Unbekannt | 3 |
| Webseite | 147 |
| Topic | Count |
|---|---|
| Boden | 429 |
| Lebewesen und Lebensräume | 397 |
| Luft | 366 |
| Mensch und Umwelt | 686 |
| Wasser | 291 |
| Weitere | 637 |