Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.
Das hier beantragte Wissenstransferprojekt soll die Anwendungsreife von Ergebnissen aus zwei früheren DFG-Forschungsprojekten zu Wasserbewirtschaftungsfragen in semi-ariden Regionen erreichen. Der Fokus wird dabei auf der Methodenübertragung und Ergebnisnutzung für die Entwicklung eines Dürrevorhersage und -managementsystems liegen. Die hier erwähnten DFG-Projekte sind: Sediment Export from large Semi-Arid catchments: Measurements and Modelling), und Generation, transport and retention of water and suspended sediments in large dryland catchments: Monitoring and integrated modelling of fluxes and connectivity phenomena. Der Praxispartner ist die Behörde für Meteorologie und Wasserressourcen des Bundesstaates Ceara (FUNCEME) im Nordosten Brasiliens. Diese führt auch Prognosen für das wasserwirtschaftliche System Cearas durch, welches durch eine stark negative klimatische Wasserbilanz und mehrere tausend (meist kleine) Stauseen gekennzeichnet ist. Es ist vorgesehen, das existierende Wasserbewirtschaftungssystem SIGA von FUNCEME mit dem prozessbasierten hydrologischen Modell WASA-SED zu kombinieren. Das WASA-SED Modell, welches aus den o.g. DFG-Projekten stammt, wurde spezifisch für semiaride meso-skalige Einzugsgebiete konzipiert und entwickelt. Damit werden die charakteristischen hydrologischen Prozesse, einschließlich von Transport- und Konnektivitätsphänomenen im Gewässernetz und den Stauseen simuliert. Die geplanten Arbeiten sind in verschiedene Ebenen gruppiert: (1) Integration des WASA-SED-Modells mit dem SIGA-System um den regionalen Wasserbehörden und Flussgebietskommissionen eine direkte Information über aktuelle und prognostizierte Werte der Stauseefüllungen, Abflüsse an bestimmten Flussabschnitten und anderen Wasserressourcen zu ermöglichen; (2) Effiziente Kommunikation der Ergebnisse mit verschiedenen Stakeholdergruppen und Möglichkeit zur Weiternutzung der Ergebnisse. (3) Anwendung von WASA-SED im Vorhersagemodus, d.h. Nutzung von kurzfristigen und saisonalen meteorologischen Vorhersagen zur Prognose der Wasserverfügbarkeit bei unterschiedlichen Vorhersagezeiträumen. (4) Nutzung der prozess-basierten Struktur von WASA-SED um Effekte sich ändernder Randbedingungen zu untersuchen, besonders bzgl. des dichten Netzes aus Stauanlagen. Wir erwarten aus dem Projekt auch Impulse für neue Forschungsfragen als Ergebnis der Integration der Wasserbewirtschaftung und -infrastruktur in das Modellsystems, so evtl.: (1) Untersuchung und Modellierung der saisonalen Dynamik der Verluste in semiariden Flusssystemen und Ableitung eines dafür geeigneten Abflussroutingansatzes; (2) Quantifizierung und Modellierung der hydro-sedimentologischen Konnektivität in komplexen, vom Menschen stark geformten Hydrosystemen, einschließlich der Effekte des dichten Stauseenetzes, Wasserüberleitungen und der teilweise künstlich verbundenen Teileinzugsgebiete.
Recyceln statt wegwerfen, dies gilt auch für die Weiternutzung von gut erhaltenern Gebrauchsgegenständen. Hier werden berlinweit Einrichtungen gelistet, die verschiedene noch gebrauchsfähige Güter entgegennehmen und an Bedürftige weiter vermitteln.
Mit der Studie wurde erst begonnen. Es soll ein Weg gefunden werden, Hausmuell nach einer Vorbehandlung wie z.B. Rotte, Verbrennung, nach verschiedenen Komponenten zu sichten und diese Komponenten als Werkstoffe dem Bauwesen zuzufuehren.
Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen. Der Fokus des wbks liegt einem Demonstrator für die automatisierte Demontage unter Berücksichtigung der genannten Herausforderungen. Der Demonstrator bildet Aspekte der Handhabung und Qualitätssicherung ab und ist für verschiedene Stackdesigns befähigt.
Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.
| Origin | Count |
|---|---|
| Bund | 605 |
| Europa | 1 |
| Global | 1 |
| Land | 64 |
| Wissenschaft | 13 |
| Zivilgesellschaft | 10 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Ereignis | 1 |
| Förderprogramm | 486 |
| Gesetzestext | 1 |
| Text | 117 |
| Umweltprüfung | 10 |
| unbekannt | 70 |
| License | Count |
|---|---|
| geschlossen | 148 |
| offen | 522 |
| unbekannt | 19 |
| Language | Count |
|---|---|
| Deutsch | 491 |
| Englisch | 232 |
| Resource type | Count |
|---|---|
| Archiv | 17 |
| Bild | 2 |
| Datei | 18 |
| Dokument | 73 |
| Keine | 480 |
| Unbekannt | 3 |
| Webseite | 148 |
| Topic | Count |
|---|---|
| Boden | 431 |
| Lebewesen und Lebensräume | 399 |
| Luft | 368 |
| Mensch und Umwelt | 689 |
| Wasser | 291 |
| Weitere | 639 |