API src

Found 900 results.

Pflanzenzüchtungsforschung-P3: 'Genomik-basierte Nutzbarmachung genetischer Ressourcen im Weizen für die Pflanzenzüchtung (GeneBank3)', Teilprojekt C

Das Projekt "Pflanzenzüchtungsforschung-P3: 'Genomik-basierte Nutzbarmachung genetischer Ressourcen im Weizen für die Pflanzenzüchtung (GeneBank3)', Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Hohenheim, Landessaatzuchtanstalt (720).

GTS Bulletin: ISXD93 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISXD93 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISX): Other surface data A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10609;Trier-Petrisberg;10616;Hahn;10641;Offenbach-Wetterpark;10655;Würzburg;10675;Bamberg;10688;Weiden;10708;Saarbrücken-Ensheim;10727;10729;Mannheim;10731;Rheinstetten;10742;Öhringen;10776;Regensburg;10791;Großer Arber;10805;Lahr;10815;Freudenstadt;10836;Stötten;10870;München-Flughafen;10895;Fürstenzell;10908;Feldberg/Schwarzwald;10929;Konstanz;10948;Oberstdorf;10961;Zugspitze;10962;Hohenpeißenberg;10980;) (Remarks from Volume-C: SYNOP HALF HOURLY H+30)

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK) (WMS Dienst)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

Wassernutzung privater Haushalte

Im Schnitt nutzt jede Person in Deutschland täglich 126 Liter Trinkwasser im Haushalt. Für die Herstellung von Lebensmitteln, Bekleidung und anderen Bedarfsgütern wird dagegen so viel Wasser verwendet, dass es 7.200 Litern pro Person und Tag entspricht. Ein Großteil dieses indirekt genutzten Wassers wird für die Bewässerung von Obst, Gemüse, Nüssen, Getreide und Baumwolle benötigt. Direkte und indirekte Wassernutzung Jede Person in Deutschland verwendete im Jahr 2022 im Schnitt täglich 126 Liter Trinkwasser , etwa für Körperpflege, Kochen, Trinken, Wäschewaschen oder auch das Putzen (siehe Abb. „Trinkwasserverwendung im Haushalt 2023“). Darin ist auch die Verwendung von Trinkwasser im Kleingewerbe zum Beispiel in Metzgereien, Bäckereien und Arztpraxen enthalten. Der überwiegende Anteil des im Haushalt genutzten Trinkwassers wird für Reinigung, Körperpflege und Toilettenspülung verwendet. Nur geringe Anteile nutzen wir tatsächlich zum Trinken und für die Zubereitung von Lebensmitteln. Die tägliche Trinkwassernutzung im Haushalt und Kleingewerbe ging von 144 Liter pro Kopf und Tag im Jahr 1991 lange Jahre zurück bis auf täglich 123 Liter pro Kopf im Jahr 2016. 2019 wurden von im Schnitt täglich 128 Liter pro Person verbraucht, 2022 waren es 126 Liter. Der Anstieg im Vergleich zu 2016 begründet sich durch den höheren Wasserbedarf in den jeweils heißen und trockenen Sommermonaten (siehe Abb. „Tägliche Wasserverwendung pro Kopf“). Doch wir nutzen Wasser nicht nur direkt als Trinkwasser. In Lebensmitteln, Kleidungstücken und anderen Produkten ist indirekt Wasser enthalten, das für ihre industrielle Herstellung eingesetzt wurde oder für die Bewässerung während der landwirtschaftlichen Erzeugung. Dieses Wasser wird als virtuelles Wasser bezeichnet. Virtuelles Wasser zeigt an, wie viel Wasser für die Herstellung von Produkten benötigt wurde. Deutschlands Wasserfußabdruck Das virtuelle Wasser ist Teil des „Wasserfußabdrucks“ , der die direkt und indirekt verbrauchte Wassermenge einer Person, eines Unternehmens oder Landes angibt. Das Besondere des Konzepts ist, dass die Wassermenge, die in den Herstellungsregionen für die Produktion eingesetzt, verdunstet oder verschmutzt wird, mit dem Konsum dieser Waren im In- und Ausland in Verbindung gebracht wird. Der Wasserfußabdruck macht deutlich, dass sich unser Konsum auf die Wasserressourcen weltweit auswirkt. Der durch Konsum verursachte, kurz konsuminduzierte Wasserfußabdruck eines Landes, wird auf folgende Weise berechnet; in den Klammern werden die Werte des Jahres 2021 für Deutschland in Milliarden Kubikmetern (Mrd. m³) ausgewiesen: Nutzung heimischer Wasservorkommen – Export virtuellen Wassers (= 30,66 Mrd. m³) + Import virtuellen Wassers (188,34 Mrd. m³) = konsuminduzierter Wasserfußabdruck (219 Mrd. m³) Bei einem Wasserfußabdruck von 219 Milliarden Kubikmetern hinterlässt jede Person in Deutschland durch ihren Konsum einen Wasserfußabdruck von rund 2.628 Kubikmetern jährlich – das sind 7,2 Kubikmeter oder 7.200 Liter täglich. 86 % des Wassers, das man für die Herstellung der in Deutschland konsumierten Waren benötigt, wird im Ausland verbraucht. Für Kleidung sind es sogar nahezu 100 %. Grünes, blaues und graues Wasser Beim Wasserfußabdruck wird zwischen „grünem“, „blauem“ und „grauem“ Wasser unterschieden. Als „grün“ gilt natürlich vorkommendes Boden- und Regenwasser, welches Pflanzen aufnehmen und verdunsten. Als „blau“ wird Wasser bezeichnet, das aus Grund- und Oberflächengewässern entnommen wird, um Produkte wie Textilien herzustellen oder Felder und Plantagen zu bewässern. Vor allem Agrarprodukte haben einen großen Anteil am blauen Wasserfußabdruck von Deutschland (siehe Abb. „Sektoren mit den höchsten Beiträgen blauen Wassers zum Wasserfußabdruck von Deutschland“). Der graue Wasserfußabdruck veranschaulicht die Verunreinigung von Süßwasser durch die Herstellung eines Produkts. Er ist definiert als die Menge an Süßwasser, die erforderlich ist, um Gewässerverunreinigungen so weit zu verdünnen, dass die Wasserqualität die gesetzlichen oder vereinbarten Anforderungen einhält. Bei den nach Deutschland eingeführten Agrarrohstoffen und Baumwollerzeugnissen sind die Anteile an grünem, blauem und grauem Wasser auch bei gleichen Produkten je nach Herkunft unterschiedlich hoch: Für ein Kilogramm Kartoffeln aus Deutschland werden 119 Liter Wasser benötigt. Davon ist mit 84 Litern der größte Teil grünes Wasser. Für die gleiche Menge an Kartoffeln aus Israel werden 203 Liter eingesetzt. Davon sind 103 Liter blaues und 56 Liter graues Wasser. Für Kartoffeln aus Ägypten werden 418 Liter benötigt. Mit 278 Litern blauem und 118 Litern grauem Wasser steckt damit im Vergleich zu israelischen Kartoffeln sogar noch das Zweieinhalbfache blauen und grauen Wassers in ihnen. Daher ist der Kauf dieser Kartoffeln am problematischsten. Obwohl in Usbekistan für den Anbau der Baumwolle mit 13.160 Litern pro Kilogramm weniger Wasser benötigt wird als in Afrika, wo man für dieselbe Menge Baumwolle 22.583 Liter pro Kilogramm einsetzt, ist der Anbau in einem regenreichen afrikanischen Land wie Mosambik weniger problematisch: Mit 22.411 Litern an grünem Wasser und 172 Litern an grauem Wasser sind die Auswirkungen für den Anbau von einem Kilogramm Baumwolle weniger gravierend als in Usbekistan mit nur 203 Litern grünem Wasser. Dort werden 12.943 Liter des verwendeten Wassers als problematisch eingeschätzt, weil mit 11.126 Litern der Großteil des Bewässerungswassers dazu beiträgt, dass die geringen Wasserressourcen des Landes durch den Baumwollanbau bedroht sind. Außerdem verursacht ein Anteil von 1.817 Litern grauem Wasser am Wasserfußabdruck von einem Kilogramm Baumwolle aus Usbekistan eine beträchtliche Verschmutzung. Bei der Entnahme von blauem Wasser zur Bewässerung von Plantagen kann es zu ökologischen Schäden und lokalen Nutzungskonflikten kommen. Ein bekanntes Beispiel ist der Aralsee: Der einst viertgrößte Binnensee der Erde war im Jahr 1960 mit einer Fläche von 67.500 Quadratkilometern nur etwas kleiner als Bayern. Heute bedeckt er aufgrund gigantischer Wasserentnahmen für den Anbau von Baumwolle und Weizen nur noch etwa 10 % seiner ehemaligen Fläche. Bis 2014 verlor er 95 % seines Wasservolumens bei einem gleichzeitigen Anstieg des Salzgehalts um das Tausendfache. Auch in weiteren Gebieten auf der ganzen Welt trägt der Konsum in Deutschland dazu bei, dass deren Belastbarkeit überschritten wird (siehe Karte „Hotspots des Blauwasserverbrauchs mit Überschreitung der Belastbarkeitsgrenzen durch Konsum in Deutschland“).

Breeding and migratory low wetland meadow birds in North Rhine - Westphalia. LIFE19 NAT/DE/000816 (LIFE Wiesenvögel NRW)

Das Projekt "Breeding and migratory low wetland meadow birds in North Rhine - Westphalia. LIFE19 NAT/DE/000816 (LIFE Wiesenvögel NRW)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel / Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. Es wird/wurde ausgeführt durch: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen.

Stärke und Zucker

Stärke ist ein pflanzlicher Reservestoff, der in Form von Stärkekörnern in Speicherorganen von Pflanzen (Körner, Knollen, Wurzeln oder Mark) angereichert wird. Stärke wird sowohl im Lebensmittel - als auch im technischen Bereich in breitem Umfang eingesetzt. Die landwirtschaftliche Erzeugung von stärkehaltigen Rohstoffen erfolgt in Deutschland durch den Anbau von Kartoffel, Weizen und Körnermais. In der Zukunft könnten die Markerbse und Neuzüchtungen mit sehr hohem Amylose- ("Amylo-Mais") oder Amylopektinanteil (z. B. Amylose-freie Kartoffel) Bedeutung erlangen, da sich hierdurch verarbeitungs- und anwendungstechnische Vorteile ergeben. Hinsichtlich der Verwendung werden drei wesentliche Produktlinien unterschieden - native Stärke (Papier, Pappe, Leime, Kleber, Gipskartonplatten, Textilverarbeitung, Kosmetika), - modifizierte Stärke (Lacke, Streichfarben, Bindemittel (Quellstärken), kationische Stärken, Papier, Pappe, Tabletten, Stärkeether und -ester) etc. sowie - Verzuckerungsprodukte (Tenside, Sorbit, Kunststoffe, Vitamin C, Alkohole, Biotechnologie).

Kalkduengung mit Huetten- und Mischkalk

Das Projekt "Kalkduengung mit Huetten- und Mischkalk" wird/wurde ausgeführt durch: Christian-Albrechts-Universität Kiel, Institut für Pflanzenbau und Pflanzenzüchtung.Durch unterschiedliche Kalkgaben von Huetten- und Mischkalk wurden Standorte ueber mehrere Rotationen konditioniert. Ertragsuntersuchungen an Weizen, Gerste und Mais werden unter Beruecksichtigung der Entwicklung von Ertragskomponenten vorgenommen. Nebenwirkungen des Huettenkalkes auf die Gesunderhaltung von Aehren werden gesondert ueberprueft.

Aufnahme von Fremdchemikalien durch verschiedene Pflanzen, die auf Boeden mit Kompost wachsen. Nachweis von Fremdchemikalien in pflanzlichen und tierischen Nahrungsmitteln sowie im Carcinomgewebe des Menschen

Das Projekt "Aufnahme von Fremdchemikalien durch verschiedene Pflanzen, die auf Boeden mit Kompost wachsen. Nachweis von Fremdchemikalien in pflanzlichen und tierischen Nahrungsmitteln sowie im Carcinomgewebe des Menschen" wird/wurde ausgeführt durch: Universität Gießen, Fachbereich 19 Ernährungs- und Haushaltswissenschaften, Institut für Ernährungswissenschaft.In bereits gewonnenen Ergebnissen stellten wir fest, dass Pflanzen Fremdchemikalien in unterschiedlicher Konzentration in den oberirdischen und unterirdischen Teilen anreichern. Den Boeden wurden unterschiedliche Mengen von Kompost beigegeben, dessen Schadstoffgehalt vorher untersucht worden war. In den Pflanzen wurden Blei, Cadmium, Chrom und polycyclische Aromaten bestimmt. Es soll geklaert werden, welche Beziehung zwischen dem Schadstoffgehalt der mit Kompost behandelten Boeden und den auf solchen Boeden gezogenen Pflanzen bestehen. 1. Weine aus Weinbaugebieten, in denen seit Jahren industriell hergestellter Kompost als 'Bodenverbesserungsmittel' (100 t/ha) Anwendung fanden sich PAK von 0,1-05 ug 3,4-Benzpyren/1,1,0-3, oug 3,4-Benzinfluoranthen/1 und 1,36-3,21 mg Blei/l Wein. (Grenzwert fuer Blei im Wein: 0,3 mg Blei/l). 2. Nahrungspflanzen (Moehren, Sommergerste, Sommerweizen, Mais, Kartoffeln und Dill), die auf drei unterschiedlich alten Parzellen einer Muelldeponie mit verschiedenen Abdeckschichten gezogen worden waren sowie auf einem Kontrollbeet. Nachgewiesen wurden in Abdeckschicht, Muellschicht und Boden und in den Pflanzen PAK sowie Cd, Cr und Pb. Die Abdeckschichten unterschieden sich in Sickerwasserberegnung und Bodenbehandlung. Auffallend waren bei diesem Feldversuch eine Reduzierung des Massenertrages und Laengenwachstums sowie eine Instabilitaet der Pflanzen.

Die Wirkung verschiedener Formen der organischen Duengung im Vergleich zur Mineralduengung

Das Projekt "Die Wirkung verschiedener Formen der organischen Duengung im Vergleich zur Mineralduengung" wird/wurde ausgeführt durch: Universität Gießen, Institut für Pflanzenbau und Pflanzenzüchtung I.6 Varianten organische Duengung, 1 Variante ohne organische Duengung in Kombination mit 4 Varianten Mineralduengung = 28 Varianten. Organische Varianten: I = 250 dt/ha Tiefstallmist, II = 300 dt/ha Stapelmist, III = 300 dt/Ha Frischmist, IV = 60 dt/ha Gerstenstroh, V = 250 dt/ha Kompostmist, VI = 17-stuendiger Schafpferch, VII = ohne organische Duengung. Die organische Duengung erfolgt jedes dritte Jahr zur Hackfrucht. In der Fruchtfolge Zuckerrueben - Weizen - Hafer werden folgende Parameter erfasst: Ertraege, Naehrstoffumsatz, Naehrstoffbilanz, Naehrstoffuntersuchungen im Boden, bodenbiologische Untersuchungen, Klimafaktoren.

C-Umsatz und C-Festlegung im Boden unter Miscanthus x gigantheus mit Hilfe natürlicher 13C-Abundanz

Das Projekt "C-Umsatz und C-Festlegung im Boden unter Miscanthus x gigantheus mit Hilfe natürlicher 13C-Abundanz" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Agrarökosystemforschung.Angesichts der durch steigende Kohlendioxid (CO2)- Konzentrationen bedingten Klimaerwärmung wird nach Möglichkeiten gesucht, CO2 unter anderem in terrestrischen Senken für längere Zeiträume festzulegen. Am Beispiel von Miscanthus x giganteus (Greef et Deu.) wurde untersucht, ob durch den Anbau von nachwachsenden Rohstoffen eine Kohlenstoff (C)- Festlegung in Böden unterschiedlicher Textur möglich ist. Zu diesem Zweck wird die Methode der natürlichen 13C-Abundanz angewandt. Mit dieser modernen Methode können C-Umsatzzeiten des Gesamtkohlenstoffs im Boden sowie seiner verschieden Pools abgeschätzt werden, aber auch die C-Dynamik auf molekularer Basis durch komponentenspezifische O13C Lipidanalysen untersucht werden. Die Untersuchungen zeigten, dass die unter Miscanthus ermittelten C-Verweilzeiten nur geringfügig länger sind als diejenigen unter Mais. Die jährliche Festlegung von miscanthusbürtigem C in der organischen Bodensubstanz (OBS) bestätigt nur für lehmigen Boden eine höhere C-Sequestrierung von Miscanthus. Es wurde eine vergleichbare C-Akkumulation durch den Miscanthusanbau wie in Grünlandböden festgestellt. Ebenso zeigen Inkubationsexperimente im Miscanthusboden eine ähnliche kumulative CO2-Freisetzung wie in Böden unter Grünland mit einer Tendenz zu geringfügig niedrigeren Freisetzungsraten im Miscanthusboden, Die Anteile von miscanthusbürtigem C am freigesetzten CO2 sind ähnlich wie in Versuchen mit Mais. Es lässt sich eine schnellere Umsetzung des miscanthusbürtigen C in der mikrobiellen Biomasse als leicht umsetzbarer C-Fraktion bestätigen. Die Zugabe leicht verfügbarer organischer Substanzen bewirkte eine verstärkte Mineralisierung der OBS, wobei dieser zusätzlich freigesetzte C entgegen den Erwartungen aus der alten, C3 bürtigen OBS Fraktion stammte. In 13C- Markierungsexperimenten konnte in Miscanthus, Mais, Weizen und Roggen die Verlagerung des kürzlich assimilierten CO2 in Pflanzenteilen verfolgt werden. Eine Verlagerung in den Boden fand hierbei kaum statt. Die O13C-Werte aus den komponentenspezifischen O13C- Lipidanalysen sind vielversprechend für die Diagnose von molekularen Markern und die daraus erfolgende Bestimmung der Umsatzraten. An den CO2- Konzentrationen der Bodenluft und der Herkunft des CO2 konnte der besondere Vegetationszyklus (später Wachstumsbeginn, verzögertes Wurzelwachstum) von Miscanthus wiedergespiegelt werden.

1 2 3 4 588 89 90