The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
Die Auswirkungen von flüchtigen organischen Verbindungen (VOC) auf die Luftqualität und damit auf die Gesundheit der Menschen auf lokaler oder regionaler Skala sind direkt offenkundig durch die schädlichen Effekte auf die Lebenswelt. Noch bedeutender ist die kritische Rolle, die VOC in chemischen Prozessen der Atmosphäre einnehmen. Die Bildung vieler sekundärer organischer Schadstoffe in der Atmosphäre wie Ozon, Peroxide, Aldehyde, Peroxyacetylnitrate und sekundäre organische Aerosole hängt entscheidend von der Verfügbarkeit der VOC und ihrer Vorläufersubstanzen ab. Wir planen die Messung von Isotopenverhältnissen und Konzentrationen spezifischer VOC in der Abluft großer Ballungszentren (MPC) in Europa und Asien durch Einsatz des Luftprobensammlers MIRAH auf den HALO-Missionen EMeRGe-EU und EMeRGe-Asia. Die Luftproben werden im Labor mittels Gaschromatographie-Verbrennungs-Isotopen-Massenspektrometrie analysiert. Isotopenverhältnisse in VOC sind wertvolle Indikatoren zur Untersuchung von Reaktionen, die derzeitigen Messverfahren nicht direkt zugänglich sind. Transport- und Mischungsprozesse in der Atmosphäre können damit visualisiert werden, wertvolle Information über dominante Prozesse, an denen VOC beteiligt sind, gewonnen werden. Bereits in den letzten HALO-Missionen, TACTS/ESMVal und den beiden OMO-Missionen, konnten wir zeigen, dass die beantragte Messmethode ein sensitives Werkzeug ist, z.B. für Quellstudien von VOC, zur Ableitung von Transportwegen und deren Einfluss auf die Verteilung der VOC, zur Abschätzung des Mischungsgrads, der Unterscheidung zwischen dynamischen und chemischen Prozessen, als auch zur Untersuchung atmosphärischer Umwandlung und Verweilzeit spezifischer VOC. Die Wertstellung dieser Ergebnisse wird sogar noch gesteigert durch den Vergleich mit Ergebnissen aus 3-dimensionalen Chemie-Transport-Modellen. Die folgenden geplanten wissenschaftlichen Zielsetzungen betten sich in die übergreifenden Ziele von EMeRGe-EU and EMeRGe-ASIA: (1) Messung der Zusammensetzung der in Europa und Asien entspringenden Schadstofffahnen und Bestimmung des Beitrags bestimmter VOC an der Zusammensetzung der Atmosphäre; (2) Bestimmung der weitreichenden Luftverschmutzung sowie deren Einfluss auf die Verteilung bestimmter VOC; (3) Identifizierung möglicher Unterschiede im Transport und der Umwandlung von VOC, die mit besonderen einzigartigen Charakteristiken europäischer und asiatischer MPCs verbunden sind; (4) Identifizierung von Oxidations- und Zwischenprodukten des VOC-Abbaus; (5) Informationsgewinnung über Oxidationswege durch Messung von Vorläufer- und Oxidationsprodukten; (6) Altersbestimmung von Luftmassen in unterschiedlichen Stadien der Schadstofffahnen; (7) Gegenüberstellung photochemischer Prozessierung gegen Transport und Mischung; (8) Verbindung der Informationen aus Isotopenverhältnissen mit bestimmten regionalen meteorologischen Daten; (9) Bereitstellung der Messdaten für Chemietransportmodelle.
Die wasserwirtschaftliche Planung in Deutschland wird von vielen Faktoren bestimmt und trägt maßgeblich zur ökologischen Gesamtsituation bei. Für den Planungsprozess stehen dem Planer eine Auswahl verschiedener Werkzeuge und Anleitungen zur Verfügung. Zur innovativen spezifischen Steigerung der Umweltentlastung muss eine ökonomisch und ökologisch optimale Lösung gefunden werden. Dazu ist es notwendig, bei gegebener Datenverfügbarkeit, die geeigneten Werkzeuge zur Planung und Entscheidung auszuwählen. Im Laufe der letzen Jahrzehnte ist bei dem Bemühen den Gebrauch der Werkzeuge bestmöglich in Regel zu fassen, die Übersicht über die vielen hundert Regelwerke und Merkblätter zum Teil verlorengegangen. Ziel des Vorhabens war es daher ein DV-gestütztes Fachinformationssystem zu entwickeln zur Informationsvermittlung und Beratung im Hinblick auf Grundlagen und Werkzeuge der wasserwirtschaftlichen Planung. Auf dieser Grundlage sollten die komplexen Informationen zur ganzheitlichen umweltorientierten Bearbeitung der Planungsaufgaben in verständlicher Sprache und Form, insbesondere für kleinere und mittlere Planungsbüros, sowie Umweltbehörden verfügbar werden. Zu Beginn des Vorhabens stand eine sogenannte Alphaversion des zu entwickelnden beratenden Informationssystems BWK-BIS mit einigen Daten aus dem Bereich Planungsregeln zur Verfügung. Zunächst wurde der bereits erstellte Prototyp der Benutzeroberfläche des BWK-BIS weiterentwickelt. Durch intensive Literaturrecherchen in zahlreichen Bibliotheken und im Internet wurde ein Überblick über den derzeitigen Stand der Technik der wasserwirtschaftlichen Planung verschafft. BWK-BIS soll alle relevanten Informationen zur wasserwirtschaftlichen Planung aus den Bereichen Recht, Bemessungsgrößen, Planungsregeln und Planungswerkzeuge umfassen. Dazu wurden die Dokumente aus diesen Bereichen erfasst. Im nächsten Schritt wurden diese Dokumente den Themen der Ortsentwässerung, zum Teil dem Hochwasserschutz und dem Grundwasserschutz zugeordnet und miteinander verknüpft. So entstand eine Betaversion des Informationssystems BWK-BIS.
Der Fokus des Projektes liegt auf der Entwicklung von Methoden zur Analyse und Charakterisierung von Dämpfungselementen in selbsterregten Mehrkomponentensystemen mit irregulärer Schwingungsantwort unter vielfältigen Betriebsbedingungen. Dämpfungselemente und ihre Wirkungsmechanismus können im Falle regulärer Lösungen, d.h. periodische oder transiente Schwingungen, mit Standardtechniken beschrieben werden, wohingegen die Identifikation und Beschreibung der Energiequellen und Energiesenken sowie des Energieflusses im Falle von irregulären Schwingungen ein ungelöstes Problem darstellt. Außerdem enthalten die meisten technischen Systeme eine Vielzahl von lokalen Nichtlinearitäten und Dämpfern, u.a. die Kontakt- und Fügestellen des Systems, und werden unter zahlreichen verschiedenen Bedingungen betrieben. Daher stellt die Charakterisierung von Dämpfungselementen unter diesen Randbedingungen eine große Herausforderung dar. Im Zustand irregulärer Schwingungen sind die zahlreichen Energiesenken in stetiger Interaktion. Spätestens die zusätzliche Komplexitätserhöhung durch die Berücksichtigung der zahlreichen Lastfälle macht eine physikalische Beschreibung der Energiedissipation und somit die Bewertung von Dämpfungsmaßnahmen unmöglich. Aus diesem Grunde sind neue Methoden zur Bewertung und Charakterisierung von Dämpfungsmaßnahmen notwendig. In diesem Zusammenhang schlagen wir die Entwicklung von Methoden und Werkzeugen zur eingehenden Analyse der Schwingungsantwort sowie der Struktur-, Dämpfungs- und Lastparameter vor. Der erste Teil setzt sich mit der Entwicklung von Methoden zur Analyse und numerischen Betrachtung von Dämpfungselementen im Umfeld von reiberregten Systemen mit irregulären Schwingungsantworten auseinander. Grundlage für diese Untersuchungen sind numerisch erzeugte Daten. Es kommen Werkzeuge aus dem Feld der nichtlinearen Zeitreihenanalyse und der multivariaten Statistik zum Einsatz. Das zentrale Element ist die Datenmatrix M, die mit charakteristischen Größen aus unterschiedlichen Klassen für unterschiedliche Lastszenarien gefüllt wird. Das abschließende Ergebnis ist eine Prozedur zur Bewertung und Optimierung von Dämpfungselementen und Dissipationsmechanismen in Systemen mit irregulärer Schwingungsantwort. Beim zweiten Teil handelt es sich um eine konsequente Fortsetzung des Vorgehens in dem Sinne, dass nun Daten aus Experimenten als Eingangsgrößen für das Verfahren gewählt werden. Somit handelt es sich um eine Validierung des Verfahrens. Die Daten stammen von einem Pin-on-Disk System und einer Reibungsbremse. Das Projekt versucht existierende Grenzen zwischen den Bereichen physikalische Systemmodellierung, Datenanalyse, Zeitreihenanalyse und Systemauslegung zu überschreiten und Synergieeffekte aus diesen Bereichen zu nutzen. Daher hat es einen visionären und ambitionierten Charakter.
Wirbellose Tiere im Boden sind schwer zu identifizieren, dabei stellen Collembola - Springschwänze - keine Ausnahme dar. Folglich ist bisher nur wenig über die grundlegende Ökologie und Naturgeschichte der Collembola bekannt, insbesondere auf der Organisationsebene von Arten und Gemeinschaften. DNA-basierten Identifikation (Barcoding und Metabarcoding) erleichtert die Identifizierung, bringt jedoch einige Schwierigkeiten mit sich: 1) Barcode-Datenbanken für Bodenorganismen sind unvollständig, insbesondere in Deutschland, 2) die Wahl des Barcodes und der PCR Primer beeinflusst die Vergleichbarkeit zwischen Studien und 3) Metabarcoding kann keine Aussage über den Umfang der Biomasse treffen. Wir adressieren diese Problematik zunächst mit der Erstellung einer spezialisierten Datenbank ('Springtail Genome Reference Database', SGRD) mit Fokus auf der Collembola-Fauna von Grasflächen. Diese Datenbank wird nicht nur alle gängigen Barcodes enthalten, sondern zusätzlich umfangreiche neue Genominformationen beinhalten. Des Weiteren implementieren wir eine shotgun-metagenomische Methodik, um die Probleme bezüglich der Primerauswahl und Biomasseschätzung beim Metabarcoding zu umgehen. Wir verwenden dann die SGRD Datenbank und Metagenomik zusammen, um die Strukturen und Funktionen der Collembola-Gemeinschaften auf allen 150 Wiesen der Biodiversitäts-Exploratorien zu bewerten. Im Einzelnen werden wir bewerten 1) wie die Intensität der Bodennutzung die Artenvielfalt, den Reichtum und 2) die Verbreitung von funktionellen Merkmalen ('Traits') beeinflusst, und 3) wie die Collembola-Gemeinschaften mit anderen Organismengruppen, insbesondere mit Pilze und Pflanzen des Graslandökosystems in Verbindung stehen. Diese Arbeit wird eine unschätzbare Ressource für die zukünftige Erforschung der Bodenfauna-Gemeinschaften in Westeuropa darstellen und neue Einblicke in die grundlegende Ökologie einer bisher wenig verstandenen Gruppe ermöglichen.
Hypothesen: Eine Vielelternpopulationen bietet eine hervorragende Ausgangspopulation für die genetische Analyse von epistatischen Interaktionen und die Identifikation derer Richtung; positive Interaktion, durch Komplementierung oder Unterstützung der Geninteraktion oder negativer Interaktion, durch Unterdrückung des genetischen Potentials durch die Interaktion; Gene, die epistatischen Effekten unterliegen, werden Organ- und Zeitspezifisch reguliert; Die erhobenen Ergebnisse können auf komplexere Genome überführt werden. Das Hauptziel dieses Projektes ist die funktionelle Charakterisierung von epistatischen Effekten für das Merkmal Blühzeitpunkt auf der genetischen und molekularen Ebene. Eine Vielelternpopulation bietet eine neue und innovative Mappingpopulation, um neue Geninteraktionen, die an dem Wechsel von der vegetativen in die generative Phase beteiligt sind zu identifizieren. Die Validierung der gewonnenen Ergebnisse in Weizen ermöglicht es, Aussagen über das Merkmal Blühzeitpunkt in komplexen Genomen und über die Übertragbarkeit gewonnener Daten innerhalb der Poaceae-Familie zu machen. Die gewonnenen Ergebnisse eröffnen ein detailliertes Verständnis über einen der wichtigsten Signalwege innerhalb der Pflanze, der zum Übergang von der vegetativen zur generativen Phase führt. Dieses ermöglicht wiederum dem Züchter die Anwendung von forschungsangewandtes Werkzeugen in Züchtungsprogrammen. Weitere Ziele: Präzisere Identifikation von Genregionen mit epistatischen Effekten für den Blühzeitpunkt in einer Vielelternpopulation mit einer mixed model Analyse durch eine verbesserte Haplotypenbildung aufgrund von höherer Markerdichte (50k SNP chip) Berechnung und Validierung der selektierten Genregionen in einem Winter- und einem Sommergerstenassoziationspanel Identifizierung von Kandidatengenen und allelischer Diversität in Genregionen mit epistatischen Effekten Expressionsanalyse von Genregionen mit signifikanten Interaktionen zur Analyse der Blühinduktion auf molekularem Level Validierung der Genregionen sowie Kandidatengene für epistatische Interaktionen in einer Vielelternpopulation in Weizen
Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.
Origin | Count |
---|---|
Bund | 3981 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 3976 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 3 |
offen | 3977 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 2930 |
Englisch | 1429 |
Resource type | Count |
---|---|
Keine | 2484 |
Webseite | 1497 |
Topic | Count |
---|---|
Boden | 2700 |
Lebewesen und Lebensräume | 2584 |
Luft | 2176 |
Mensch und Umwelt | 3970 |
Wasser | 1824 |
Weitere | 3981 |