API src

Found 314 results.

Related terms

International Collaboration in Chemistry: First Principles Multi-Lattice Kinetic Monte Carlo Simulations of NOx Storage Reduction Catalysts

The broad objective of the research is to gain a fundamental understanding of the surface reaction chemistry of exhaust catalysts operating under cycling conditions. Using an integrated theoretical approach we specifically target NOx abatement, with particular emphasis on the appearance and destruction of surface oxide phases as the reactor conditions cycle from oxidative to reductive during the operation of the NOx Storage Reduction (NSR) catalyst system. Methodologically this requires material-specific, quantitative and explicitly time-dependent simulation tools that can follow the evolution of the system over the macroscopic time-scales of NSR cycles, while simultaneously accounting for the atomic-scale site heterogeneity and spatial distributions at the evolving surface. To meet these challenging demands we will develop a novel multi-scale methodology relying on a multi-lattice first-principles kinetic Monte Carlo (kMC) approach. As representative example the simulations will be carried out on a PdO(101)/Pd(100) surface oxide model, but care will be taken to ensure a generalization of the multi-lattice first-principles kMC approach to other systems in which phase transformations may occur and result in a change in the surface lattice structure depending upon environmental variables.

Vertikale Verteilung von Wolkenkondensationskernen in marinen und kontinentalen Luftmassen in Europa und ihre Verbindung zur Wolkentropfenanzahlkonzentration in warmen Wolken

Die Anzahl der verfügbaren Wolkenkondensationskerne (CCN) beeinflusst maßgeblich die mikrophysikalischen Wolkeneigenschaften, wie z.B. die Wolkentropfenanzahlkonzentration (CDNC) und deren Größenverteilung. CDNC und die Tropfengröße steuern sowohl die Strahlungseigenschaften als auch die Lebensdauer von Wolken. Dies wirkt sich komplex auf die Energiebilanz der Erde aus. Aktuelle Klimamodelle basieren häufig auf Annahmen über CCN Anzahlkonzentrationen und andere CCN bezogene Eigenschaften (z.B. Hygroskopizität), da für viele Regionen auf der Erde repräsentative Daten fehlen. Wenn vorhanden, handelt es sich bei diesen CCN Daten um bodengebundene Messungen, welche somit nicht - mit Ausnahme von Bergstationen - in der für Wolkenbildungsprozesse relevanten Höhe durchgeführt wurden. Für die Karibikregion wurde gezeigt, dass die bodengebundenen CCN Messungen für die gesamte marine Grenzschicht repräsentativ zu sein scheinen also auch für die Wolkenbildungsregionen. Im hier vorgeschlagenen Projekt wollen wir überprüfen, ob bodengebundene CCN Messungen auch in anderen Erdregionen repräsentativ sind für die CCN Anzahl in der Wolkenbildungsregion, und wenn ja, unter welchen Bedingungen. Dies würde die Anwendung von CCN Daten in Modellen stark vereinfachen. Dazu wird die Gültigkeit der Beobachtungen in der Karibik, in zwei gegensätzlichen Umgebungen getestet werden, einmal in einer marinen und einmal in einer kontinentalen Umgebung. Die Messkampagne zu marinen CCN soll auf den Azoren (Portugal) durchgeführt werden. Wir werden kontinuierlich verfügbare CCN Daten von der Azoren Eastern Nordatlantik (ENA) Station auf der Insel La Graciosa (auf Meereshöhe) mit Daten von der Bergstation Pico (Pico Island, 2225 m ü.d.M.) kombinieren. Ergänzend werden CCN und CDNC Messungen auf der Helikopter-Messplattform (ACTOS) durchgeführt, um die vertikale Lücke zwischen den Meeresspiegel- und Bergmessungen zu schließen. Die kontinentalen bodengebundenen CCN Messungen werden kontinuierlich an der ACTRIS Station Melpitz durchgeführt. Die vertikale CCN und CDNC Verteilung wird in Melpitz mit Hilfe eines Ballons in mehreren einwöchigen Kampagnen einmal pro Jahreszeit gemessen werden. Darüber hinaus werden wir mit Hilfe der Aerosol-Wolken-Wechselwirkungsmetrik (ACI) die in der Wolke in-situ gemessen CCN Eigenschaften (das heißt Anzahl und Hygroskopizität) mit den CDNC quantitativ verbinden. Es wird außerdem eine Sensitivitätsstudie mit einem Cloud-Parcel Model durchgeführt, welches durch die realen Messungen in der Atmosphäre angetrieben werden wird. Dies wird einen Einblick in das Übersättigungsregime von frisch gebildeten Wolken gewähren.Die CCN Daten selbst, die Erkenntnisse zu CCN Eigenschaften und ihrer vertikalen Verteilung sowie die quantitative Verbindung zwischen CCN und CDNC werden im Hinblick auf das Verständnis und die Modellierung der Wolkentropfenaktivierung sowie der mikrophysikalischen Wolkeneigenschaften von außerordentlichem Wert sein.

Development of a Bayesian estimator for non-stationary Markov transition probabilities and its application to EU farm structural change

The agricultural sector has experienced substantial structural changes in the past and faces continuing adjustments in the future. The implications of structural change are not only relevant for the sector itself but have broader social, economic and environmental consequences for a region. An understanding of this process is required in order to assess how (agricultural-) policy affects or, if a specific social outcome is desired, can influence this development. A common approach to gain understanding of the process is to model structural change as a Markov process. One problem in the analysis of structural change in the EU is that farm level (micro) data is rarely available such that inference about behaviour of individual farms has to be derived from aggregated (macro) data. Recently, the generalized cross entropy estimator gained popularity in this context since it allows considering prior information such that the often underdetermined 'macro data' Markov models can be estimated. However, the way prior information is considered is also the greatest drawback of the approach. Therefore, the project aims to develop a Bayesian framework as an alternative estimator that allows to consider prior information in a more efficient and transparent way. The project will further provide an evaluation of the statistical properties of the estimator as well as an exemplifying application analyzing the effects of single farm payments on agricultural structural change in the EU.

Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch

Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.

Trophic interactions in the soil of rice-rice and rice-maize cropping systems

Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.

Forschergruppe (FOR) 986: Structural Change in Agriculture, How should Model Linkages be designed to analyze the Effects of Global Agricultural Trade Liberalization at the Farm Level?

In the last decades agricultural policy has gained increasingly in complexity. Nowadays it influences the food and agricultural sector from the global market down to the farm level. Widespread research questions, like the impact of the WTO negotiations on the farm structure, most often require comprehensive modeling frameworks. Thus, different types of models are utilized according to their comparative advantages and combined in a strategically useful way to more accurately represent micro and macro aspects of the food and agricultural sector. Consequently, in recent years we have seen an increase in the development and application of model linkages. Given this background, the overall objective of this subproject is a systematic sensitivity analysis of model linkages that gradually involves more and more characteristics of the linkage and the corresponding transfer of results between models. In addition, the project aims to answer the following specific question: How does structural change at the farm level influence aggregate supply and technical progress? Under which conditions is it possible to derive macro-relationships from micro-relationships? How does the aggregation level influence the model results and how can possible problems be overcome? This procedure is used to quantify the effects and to derive conditions for optimal interaction of the connected models. The analysis is based on the general equilibrium model GTAP (Global Trade Analysis Project) and the farm group model FARMIS (Farm Modelling Information System) which are employed in conjunction to analyze the effects of WTO negotiations on the farm level.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Die morphologische Reaktion des Wattenmeeres auf den Klimawandel (MOREWACC)

Das Wattenmeer, das sich von Den Helder in den Niederlanden bis nach Skallingen in Dänemark erstreckt, ist ein Prototyp für eine durch den Meeresspiegelanstieg bedrohte Küstenregion. Über 50% des Wattenmeeres besteht aus Wattflächen, die nur während eines Teils des Gezeitenzyklus von Wasser bedeckt sind. Dadurch wird das einzigartige Küsten-Ökosystem des Wattenmeeres geformt, das aufgrund von Akkumulation von Sediment aus der Nordsee den Meeresspiegelanstieg der letzten Jahrhunderte überleben konnte. Angesichts der beobachteten Beschleunigung des Meeresspiegelanstieges stellt sich die Schlüsselfrage, bis zu welcher Rate des Meeresspiegelanstieges diese Sedimentakkumulation für das Überleben des ausreicht. Diese Frage ist hochkomplex, da die Sedimentflüsse in das Wattenmeer selbst von der Rate des Meeresspiegelanstieges sowie von anderen klimatischen Einflüssen und von der Sedimentverfügbarkeit in nicht-linearer Weise abhängen. Es ist bekannt, dass Netto-Sedimentflüsse durch von nicht-linearen Flachwassergezeiten und horizontalen Dichtegradienten (aufgrund von Niederschlag, Süßwasserabfluss und Oberflächen-Wärmeflüssen) bedingten Gezeitenasymmetrien angetrieben werden. Die Nichtlinearität der Gezeiten wiederum hängt vom Meeresspiegelanstieg selbst ab und die horizontalen Dichtegradienten variieren mit klimabedingten Änderungen von Verdunstung/Niederschlag und Abkühlung/Erwärmung. Weiterhin hängen Sedimentflüsse vom Windantrieb ab, der ebenfalls mit dem Klima variiert. Obwohl ein fundiertes Verständnis der zugrundeliegenden Sedimenttransportprozesse im Wattenmeer vorliegt, werden für Projektionen von morphologischen Veränderungen weiterhin einfache vertikal integrierte Modelle verwendet. Die Erkenntnisse, die aus solchen Modellen gewonnen werden, sind daher sehr eingeschränkt. Das wichtigste Ziel dieses Projektes ist daher, mögliche morphologische Reaktionen des Wattenmeeres auf einen beschleunigten Meeresspiegelanstieg und andere Aspekte des Klimawandels sowie Einflüsse von Sedimentverfügbarkeit mit Hilfe eines prozess-basierten Modells zu untersuchen. Dabei werden die wichtigsten Antriebe für Sedimenttransportprozesse in das Wattenmeer berücksichtigt. Zunächst sollen diese Modellsimulationen in systematischer Weise unter Nutzung verschiedener idealisierter Bathymetern durchgeführt werden, um die kritischsten Prozesse morphodynamischer Veränderungen zu erkennen. Mit Hilfe dieser Bathymeter können die Einflüsse des Meeresspiegelanstieges in Kombination mit anderen Einflussfaktoren (Niederschlag/Verdunstung, Abkühlung/Erwärmung, Wind-Wellenantrieb) untersucht werden. In einer zweiten Phase des SPP, unter der Annahme, dass die verfügbaren Computer Ressourcen weiter anwachsen, sollen solche Simulationen für realistische und komplexere Gezeitenbecken im Wattenmeer durchgeführt werden. In beiden Phasen des SPP soll die Dynamik von Salzwiesen explizit mit untersucht werden.

P 2.3 - Dynamiken von Konvektionen als Kopplung zwischen dem marinen Oberflächenfilm und der Wassermasse

Unsere Motivation liegt in der Tatsache, dass die dynamische Verbindung zwischen dem marinen Oberflächenfilm (engl. sea-surface microlayer, SML) und der darunterliegenden oberflächennahen Wasserschicht über Konvektion zu heterogenen Eigenschaften der SML führt. Dies wiederum steuert das Ausmaß der bio-photochemischen Reaktionen und des Gasaustausches zwischen dem Ozean und der Atmosphäre. Die Konvektion wird durch Verdunstung angetrieben, die die SML abkühlt und es salzhaltiger macht. Infolgedessen wird die SML dichter, sinkt ab und wird durch das darunterliegende Wasser ersetzt. Die auftriebsgetriebene Konvektion wurde jedoch bei der Erforschung der SML und des Gasaustausches als dynamisches Bindeglied zwischen der Atmosphäre und dem Ozean vernachlässigt. Unser Hauptziel ist es, ein mechanistisches Verständnis der Dynamik zwischen der SML und der oberflächennahen Wasserschicht zu beschreiben. Ein mechanistisches Verständnis der Konvektion ist wichtig, da das Ausmaß der bio-photochemischen Reaktionen und Austauschprozessen von Spurengasen, Energie und Impuls letztlich durch Austauschprozesse zwischen der SML und der oberflächennahen Wasserschicht und schließlich mit tieferen Schichten bestimmt wird. Wir werden einen experimentellen Aufbau mit mehreren profilierenden Mikroelektroden und einem optischen Schlierensystem entwickeln, um die Konvektion unter verschiedenen externen Antrieben zu untersuchen. Wir werden den Effekt der horizontalen Strömung aufgrund von Gradienten der Oberflächenspannung (d.h. Marangoni-Effekt) untersuchen. Wir werden auch an dem gemeinsamen Mesokosmen-Experiment BASS teilnehmen, um den Einfluss biogener Tenside auf den konvektiven Transportmechanismus zwischen der SML und der oberflächennahen Wasserschicht zu untersuchen. Im gemeinsamen Feldexperiment BASS werden wir der Frage nachgehen, inwieweit Variationen der klein-skaligen Konvektion durch die Variabilität sub-mesoskaligen (1 km-10 km) und hydrodynamischen Prozessen nahe der Meeresoberfläche beeinflusst werden. Wir werden zwei Forschungskatamarane und eine Flotte von Treibbojen einsetzen, die mit Leitfähigkeits- und Temperatursensoren ausgestattet sind, um Dichteanomalien zwischen der SML und oberflächennahen Wasserschicht zu untersuchen. Wir werden externe ozeanische und atmosphärische Einflüsse beobachten, um die Dichteanomalien zu beschreiben. Schließlich werden wir die gewonnenen Erkenntnisse aus den Laborexperimenten, der Mesokosmos-Studie und der Feldstudie nutzen, um einen mathematischen Rahmen zur Beschreibung von Temperatur- und Salzgehaltsprofilen und deren Schwankungen unter dem Einfluss definierter ozeanischer und atmosphärischer Einflüsse zu entwickeln.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Vom Labor ins Feld: Untersuchungen zum Immersionsgefrieren von atmosphärenrelevanten Eisnukleationskeimen

Das hier vorgeschlagene Projekt, RP6 in INUIT-2, zielt darauf hin, fundamentales Prozessverständnis in Bezug auf heterogene Eisnukleation zu erzielen, und hier besonders auf die Rolle von biogenen Eiskeimen und von Eiskeimen die aus Mischungen von biogenem und mineralischem Material bestehen. Der Leipzig Aerosol Cloud Interaction Simulator (LACIS) wird dazu verwendet werden, das Immersionsgefrierverhalten einer Reihe von verschiedenen Eiskeimen zu untersuchen, darunter biogene (von Pilzen stammende) Eiskeime, solche die aus einer Mischung von biogenem und mineralischem Material bestehen wie Bodenstäube und Proben die innerhalb von INUIT-2 als Test-Materialen verwendet werden. Letztere werden von verschiedenen Gruppen von innerhalb und außerhalb von INUIT vermessen werden, und die Ergebnisse werden Vergleichen unterzogen werden, ähnlich denen, die bereits für einfachere Test-Materialien in INUIT-1 erfolgreich durchgeführt worden sind. Für die Eiskeime, die zur Untersuchung in RP6 vorgeschlagen werden, wird in sinnvollen und machbaren Fallen eine Oberflächenbehandlung durchgeführt werden, mit reaktiven und mit chemisch inerten Substanzen, deren Einfluss auf die Eiskeimfähigkeit dann untersucht wird. Wie bereits in früheren LACISStudien dokumentiert, sind kontrollierte Oberflächenbehandlungen ein ausgezeichnetes Instrument um zu ermitteln, was dazu führt, dass ein Partikel ein effektiver Eiskeim ist. Zusätzlich erhellen diese Untersuchungen den Effekt der Alterung auf die Eiskeime. Es ist auch geplant, die Messungen auszuweiten, hin zu Bedingungen unter denen eine Untersättigung bezüglich Wasserdampf vorliegt. Es soll untersucht werden in wie weit sich die Eiskeimbildung unter diesen Bedingungen verhält wie es im Fall von Immersionsgefrieren in konzentrierten Lösungen zu erwarten wäre. Von all den experimentell erhaltenen Daten werden verschiedene Parametrisierungen abgeleitet, sowohl zeit-abhängige als auch zeit-unabhängige, die dann der Wissenschaftsgemeinschaft für die weitere Verwendung in Modellen zur Verfügung gestellt werden. Die hier vorgeschlagenen Studien werden die bereits erfolgreich an LACIS während INUIT-1 durchgeführten Arbeiten ergänzen, da die Arbeiten in INUIT-1 stärker auf die Untersuchung reiner Mineralstäube und reiner biogener Substanzen hinzielten. Die Untersuchung von komplexeren und entsprechend mehr atmosphärenrelevanten Eiskeimen wird signifikant dazu beisteuern, atmosphärische Eiskeimbildung generell besser zu verstehen, und die entsprechenden Beiträge von mineralischen und biogenen Substanzen zu quantifizieren.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Biogene Opalisotope - neue Proxies zur Untersuchung vergangener Nährstoffkreisläufe und hydrographischer Strukturen im Südpazifik in Beziehung zu der Entwicklung des Klimas und der antarktischen Kryosphäre

Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.

1 2 3 4 530 31 32