Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Der Sahel ist eine Grenzregion zwischen Wuesten und fruchtbarem Land. Wegen der geringen Ressourcendichte koennen in solchen Grenzregionen keine Eigentumsrechte etabliert werden, und wegen der fehlenden Eigentumsrechte sammeln sich dort relativ zur Ressourcenbasis zu viele Menschen. Die Ueberbevoelkerung hat Wohlfahrtseinbussen fuer Westafrika in seiner Gesamtheit zur Folge, die bei freier Wanderung durch einseitige Hilfe an den Sahel nur noch verstaerkt werden. Ein Ersatz der zur Zeit gewaehrten direkten Hilfe durch eine indirekte Hilfe, die an die fruchtbaren Nachbarregionen geleistet wird, wuerde zu einer Verbesserung der Bevoelkerungsallokation fuehren, die nicht nur die Wohlfahrtseinbussen verringert, sondern unter schwachen technologischen Bedingungen auf lange Sicht die Gesamtproduktion Westafrikas um mehr als das Umschichtungsvolumen erhoehen und sogar den Lebensstandard der Sahelbevoelkerung selbst verbessern kann.
Multi-level monitoring of destabilized Sahelian regions connects field work in situ with detailed to semi-detailed analysis of vegetation structure (aerial photography), vegetation functional types and units of rational landcover (satellite images). Human impact on Sahelian vegetation in its regional variations is a main reason for continous destruction of former grazing lands. Regional dynamics of impact patterns are analysed by means of multi-stage remote sensing techniques and multi-spectral image classification. Integration of remotely sensed as well as of socio-economic data with geo-information systems is an important tool for modelling regional dynamics of degradation and desertification due to multi-thematic and multi-temporal input parameters. Intersection of geo-informations creates change detection databasas of Sahelian regions. Planning sustainable development will urgently need the appropriate use of the presented facilities of IGIS technology.