API src

Found 8 results.

oxygen concentration - bottom

With ERGOM-GETM-WBS model calculated concentration of bottom oxygen (mean value), between August to September for the years 2006 to 2014 in the Western Baltic Sea.

total phosphorus

With ERGOM-GETM-WBS model calculated total phosphorus, between 2006 and 2014 in the Western Baltic Sea.

total nitrogen

With ERGOM-GETM-WBS model calculated total nitrogen, between 2006 and 2014 in the Western Baltic Sea.

MGF-Ostsee Project EMB238

Hydro-physical investigations (CTD Data) at cruise EMB238 of IOW as part of the MGF-Ostsee Project: Potential effects of closure for bottom fishing in the marine protected areas (MPAs) of the western Baltic Sea - baseline observations

Modeled 3D biogeochemical processing of phosphorus from the Warnow River in the western Baltic Sea from 1995 to 2014, base scenario, v04 Unterwarnow turnover

A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1985 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades. The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx). The years 1995 to 2014 are available here. The model simulation was forced by coastDat2 COSMO-CLM data (doi: 10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi: 10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used (PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the “Unterwarnow turnover estimation v04” (see final project report of PhosWaM for details).The work was performed within the project PhosWaM funded by the German Federal Ministry of Education and Research (BMBF, FKZ 033W042, https://www.phoswam.de). PhosWaM is one of 15 joint research projects in the funding measured ReWaM of the funding priority NaWaM in BMBF framework program FONA (details in the project description). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

Modeled 3D biogeochemical processing of phosphorus from the Warnow River in the western Baltic Sea from 1995 to 2014, base scenario, v05 Unterwarnow turnover

A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1985 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades. The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx). The years 1995 to 2014 are available here. The model simulation was forced by coastDat2 COSMO-CLM data (doi: 10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi: 10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used (PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the “Unterwarnow turnover estimation v04” (see final project report of PhosWaM for details).The work was performed within the project PhosWaM funded by the German Federal Ministry of Education and Research (BMBF, FKZ 033W042, https://www.phoswam.de). PhosWaM is one of 15 joint research projects in the funding measured ReWaM of the funding priority NaWaM in BMBF framework program FONA (details in the project description). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

Modeled 3D biogeochemical processing of phosphorus from the Warnow River in the western Baltic Sea from 1995 to 2014, BSAP compliance scenario, v04 Unterwarnow turnover

A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1985 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades. The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx). The years 1995 to 2014 are available here. The model simulation was forced by coastDat2 COSMO-CLM data (doi: 10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi: 10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was modified in order to comply with BASP (Baltic Sea Action Plan) targets (PhosWaM SWAT case "15"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details).The work was performed within the project PhosWaM funded by the German Federal Ministry of Education and Research (BMBF, FKZ 033W042, https://www.phoswam.de). PhosWaM is one of 15 joint research projects in the funding measured ReWaM of the funding priority NaWaM in BMBF framework program FONA (details in the project description). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

Modeled 3D biogeochemical processing of phosphorus from the Warnow River in the western Baltic Sea from 1995 to 2014, BSAP compliance scenario, MFTR scenario, v04 Unterwarnow turnover

A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1985 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades. The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx). The years 1995 to 2014 are available here. The model simulation was forced by coastDat2 COSMO-CLM data (doi: 10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi: 10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, 10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was calculated and a Maximum Technical Feasible Reduction (MTFR) approach was applied (PhosWaM SWAT case "35"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details).The work was performed within the project PhosWaM funded by the German Federal Ministry of Education and Research (BMBF, FKZ 033W042, https://www.phoswam.de). PhosWaM is one of 15 joint research projects in the funding measured ReWaM of the funding priority NaWaM in BMBF framework program FONA (details in the project description). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

1