In tropischen und subtropischen Kuestenwuesten treten wiederholt Nebeloasen auf. Die Nebeloasen Namibias werden vor allem von verschiedenen Flechtenarten besiedelt, zu denen sich nur wenige Spezialisten unter den Hoeheren Pflanzen gesellen. Die Arbeiten zeigen, dass die namibischen Nebeloasen zum Teil durch die feuchte Luft des benachbarten Meeres und zum Teil durch Kaltluftstroeme aus dem Inland verursacht werden. Je nach Intensitaet und Dauer der Nebel-Wetterlagen ergeben sich unterschiedliche Flechten-Gesellschaften, deren mittlere Bio- Produktion ebenso bestimmt wird wie die CO2-Assimilation in Abhaengigkeit von Anfeuchtung und Salzeintrag. Ausserdem werden der Transport und die Erosion der Flechten durch den Wind untersucht. Hieraus ergeben sich Empfehlungen fuer Nutzung und Naturschutz. Die hier lebenden Hoeheren Pflanzen sind auch Gegenstand der Untersuchungen. Von Interesse ist ihre Anatomie, Cuticula-Struktur, Wasseraufnahme und -leitung sowie ihre Bioproduktion in Abhaengigkeit vom zeitlichen Verlauf der Wasseraufnahme.
Schwerewellen (GWs) sind zu kleinskalig, um in den heutigen Wetter- und Klimamodellen aufgelöst zu werden. Sie müssen daher parametrisiert werden, da sie einen starken Einfluss auf die Dynamik der großen Skalen haben. Parametrisierungen existieren für orographisch und konvektiv erzeugte GWs, während für die GW-Quellen entlang großskaliger Jets noch keine etablierte Parametrisierung vorliegt. Die Quellen resultieren aus einer spontanen Imbalance (SI) der großskaligen quasi-geostrophischen Strömung. Die Untersuchung von Schwerewellenabstrahlung durch SI ist schwierig, da die GWs in ein sehr komplexes zeitabhängiges Strömungsfeld eingebettet sind, mit einer großen Zahl von interagierenden Prozessen. Auch die Validierung von Parametrisierungen wird dadurch erschwert. Daher kombinieren wir Theorie und numerische Modellierung mit ergänzenden Laborexperimenten. Laborexperimente garantieren eine Reproduzierbarkeit der betrachteten großskaligen Strömungssituation. Die direkte Korrespondenz zwischen den experimentellen Daten und den Modelldaten und die erwähnte Reproduzierbarkeit machen das Laborexperiment zu einem idealen Prüfstand für Parametrisierungen und für die Untersuchung klimarelevante Prozesse. Das differenziell beheizte rotierende Zylinderspalt-Experiment, welches an der BTU (Brandenburg Technische Universität Cottbus-Senftenberg) aufgebaut und betrieben wird, stellt die Referenzdaten für Benchmark-Simulationen an der GU-F (Goethe Universität Frankfurt) und dem IAP (Leibniz Institut für Atmosphärische Physik, Kühlungsborn) bereit. Dabei stehen Experimente im Vordergrund, die zeigen sollen, welche baroklinen Strömungen eine besonders ausgeprägte GW-Abstrahlung aufweisen. Ergänzend dazu werden idealisierte numerische Simulationen an der GU-F und dem IAP durchgeführt, um die Variabilität der GWs und den Abstrahlungsprozess zu untersuchen. Wichtig ist dabei, einen Zusammenhang zwischen verschiedenen großskaligen Strömungen und der mesoskaligen GW-Quelle herzustellen und diesen Zusammenhang mittels grob aufgelöster Wellenstrahlenmodelle zu validieren. Ziel ist es, eine skalenabhängige SI-Parametrisierung zu konstruieren. Diese Parametrisierung soll mit Hilfe der Labor-Referenzdaten validiert werden. Begleitet wird dies von einer Analyse grob- und feinaufgelöster Daten aus UA-ICON Simulationen. Schließlich soll die Parametrisierung an das Wellenstrahlenmodell MS-GWaM angekoppelt werden, welches in UA-ICON implementiert ist.
Im Hochbau werden in jüngerer Zeit vermehrt großvolumige Bauwerke vorwiegend in Holz- oder Holz-Hybridbauweise mit Massivholz (Brettsperrholz, BSP) nachgefragt und realisiert. Im Vergleich dazu waren bisher die Projektgrößen im Holzbau üblicherweise durch geringere Ausmaße geprägt. Dort konnte der Witterungsschutz meist durch kurze Montagezeiten unter Beachtung günstiger Wetterlagen oder durch Verwendung von temporären Abdeckungen hinreichend gewährleistet werden. Die aktuellen Erfahrungen mit großvolumigen und vielgeschossigen Bauwerken in Holzbauweise zeigen hingegen deutlich, dass die erforderlichen spezifischen Bau- und Montageabläufe andere und neue Witterungsschutz-Konzepte verlangen. Die konstruktiven und organisatorischen Planungen einschließlich der Vergabebeschreibungen berücksichtigen bisher erfahrungsgemäß nur selten hinreichende Schutzmaßnahmen. Oftmals werden diese Leistungen am Ende der Planungsphase ausschließlich den ausführenden Firmen überlassen - mit der Konsequenz, dass geplante Konstruktionen oft nicht oder nur unzureichend vor Feuchte geschützt werden können. Ein zweiter Schwerpunkt des Feuchteschutzes liegt in der Nutzungszeit. Baukonstruktionen aus dem organischen Material Holz sind feuchteempfindlich und vor Leck- und Leitungswasserschäden besonders schutzbedürftig. Daher ist das Gesamtziel des Forschungsvorhabens HolzQS, konkrete Lösungen und Qualitätssicherungssysteme für den modernen mehrgeschossigen Holzbau zu entwickeln, die einen guten organisatorischen und konstruktiven Holz- und Witterungsschutz während der Fertigungs-, Bau- und auch der Nutzungsphase sicherstellen. Feuchteschäden im Holzbau soll künftig umfassend, proaktiv und präventiv begegnet werden können. Das Schadenspotential bei großvolumigen Holzgebäuden lässt sich sowohl in der Bauzeit als auch während der Nutzungsphase deutlich verringern, wenn auf Basis der Ergebnisse dieses Verbund-Forschungsvorhabens entsprechende praxisgerechte Schutzkonzepte zur Verfügung stehen.
Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.
Im Rahmen des 'Mesoscale Alpine Programme' (MAP), einer internationalen kooperativen Forschungsinitiative zahlreicher Institutionen europäischen und außereuropäischer Länder zum Studium intensiver Wettervorgänge im Alpenraum, ist die Erforschung des Föhns als ein Schwerpunkt festgelegt worden. Das Alpenrheintal von seinem Ursprung an den Pässen des Alpenhauptkamms bis zum Bodensee, einschließlich der Seitentäler, wurde von den internationalen MAP Gremien zum Zielgebiet ausgewählt. Diese Region wird in einer gemeinsamen Aktion im kommenden Jahr von einem dichten Beobachtungsnetz überzogen um den Atmosphärenzustand während interessanter meteorologischer Situationen zu erfassen. Der vorliegende Forschungsantrag soll einer der österreichischen Beiträge zu dieser internationalen Initiative werden. Er ist so angelegt, dass er einerseits die Messungen der zahlreichen anderen Forschergruppen durch zusätzliche Messungen ergänzt, anderseits werden eigene Forschungsziele verfolgt. Die entsprechenden Fragestellungen sollen dann anhand des gemeinsamen MAP Datensatzes studiert werden. Das vorliegende Projekt verfolgt zwei Hauptziele, nämlich (1) die Erfassung der kleinskaligen räumlich zeitlichen Variabilität und des Lebenszyklus von Föhnepisoden in Bodennähe, und (2) die Beobachtung der Struktur der Föhnströmung in der unteren und mittleren Troposphäre, wobei vor allem auf die Wechselwirkung zwischen den Strömungsprozessen in Tälern verschiedener Länge, Breite und Richtung eingegangen werden soll. Als weiteres Ziel ist die Qualitäts-Evaluierung der erhobenen Messdaten zu nennen, die mittels eines ausgeklügelten Verfahrens durchgeführt werden soll, welches in der jüngsten Zeit von den Antragstellern entwickelt wurde. Die qualitätsgeprüften Messungen sollen schließlich dem internationalen MAP Datenzentrum für die weitere Bearbeitung zur Verfügung gestellt werden, von wo die Antragsteller dann als Gegenleistung auch die Beobachtungsdaten der anderen beteiligten Forschergruppen beziehen können. Das Alpenrheingebiet wurde deshalb als Zielgebiet ausgewählt, weil dort klimatologisch eine der höchsten Wahrscheinlichkeiten für Föhn im Alpenraum vorliegt und die Länder Österreich, Schweiz und Deutschland betroffen sind. Außer an wenigen langjährigen Klimastationen ist bisher wenig über die kleinräumige Struktur von Föhn in dem von den Antragstellern ausgewählten Gebiet bekannt, nämlich dem Walgau von Bludenz bis Feldkirch und dem Brandner Tal, südlich von Bludenz. Eine bessere Kenntnis und vor allem eine besser Vorhersage von Föhn in diesem Gebiet ist von großem praktischem Wert, da immer wieder Schäden durch Föhn (z. B. Sturmschäden) auftreten und plötzlich und unerwartet auftretende Windböen und Turbulenz eine beträchtliche Gefahr für die Luftfahrt, insbesondere für motorlose Fluggeräte darstellt. usw.
Das Projekt beschreibt neue Grundlagedaten und Hintergrundinformationen fuer die Untersuchungen des Klimasystems regionaler bis nationaler Raeume. Dazu verwendet es instrumentelle Klimamessungen, welche bis ins letzte Jahrhundert zurueckreichen. Nebst der Aufbereitung der historischen Daten in klimatologischer und witterungsgeschichtlicher Hinsicht ist ein Anteil geeignet, das Verstaendnis von Umweltprozessen und Umweltdaten zu vertiefen. Ausgehend von punktuell vorhandenen meteorologischen Messreihen soll ein Schwergewicht auf regional und national wichtigen Datensaetzen und ihren klimarelevanten Aussagen liegen. Neben einer inventarischen Erschliessung und Beschreibung der Datensaetze ist eine qualitative und quantitative Beschreibung der Eigenschaften solcher Klimamessreihen vorgesehen. Mit Hilfe von geeigneten Homogenisierungsverfahren und statistischen Auswertungen sollen die Datensaetze systematisch untersucht werden. Themen solcher Untersuchungen sind das zeitliche und raeumliche Verhalten von Klimaelementen. Zur Diskussion gestellt werden Interaktionen zwischen Klimaelementen in historischer und heutiger Zeit.
Die Bewertungskarten unterscheiden in den sogenannten Wirkraum (Siedlungsraum) und Ausgleichsraum (Grünflächen, landwirtschaftliche Flächen, Wald). Abhängig davon, ob die Situation am Tage oder in der Nacht betrachtet wird, sind für die Bewertung unterschiedliche Parameter relevant und unterschiedliche Vorgehensweisen wurden gewählt. Für die Bewertung der Tagsituation wird für Wirk- und Ausgleichsraum gleichermaßen die Physiologische Äquivalente Temperatur (PET) herangezogen. Die Bewertung hat hier für die nahe Zukunft mit moderatem Klimaschutz (RCP 4.5) stattgefunden. -------------------------------------------------------------------- Wirkraum (Siedlungsflächen, Plätze und Straßenraum) und Ausgleichsraum (Grünflächen, Landwirtschaftliche Flächen und Wald): Für die Tagsituation werden Wirk- und Auslgeichsraum gleichermaßen betrachtet und bewertet. Als Bewertungsgröße für die humanbioklimatische Situation liegt die Physiologische Äquivalente Temperatur (PET) zugrunde. Dabei liegt der Fokus auf einer möglichst hohen Aufenthaltsqualität. Während der Wirkraum häufig als Aufenthaltsbereich im Alltag dient und gleichzeitig hohen thermischen Belastungen unterliegen kann, können Parks- oder Waldflächen im Ausgleichsraum als Rückzugs- und Erholungsorte dienen. Die Bewertungsstufen folgt anhand der festgeschriebenen Klassen bei PET. Um kleinräumige Unterschiede kenntlich zu machen, wird eine zusätzliche Klasse „erhöhte Wärmebelastung“ eingefügt . Das Vorgehen bietet eine direkte Verknüpfung der Belastungssituation mit den absoluten PET-Werten, jedoch muss berücksichtigt werden, dass diese Bewertung - im Unterschied zur Nachtsituation – nicht auf andere Wetterlagen bzw. andere Temperaturniveaus übertragbar ist. 1 - Schwache Wärmebelastung - Grenzwert bis 29 °C (PET) 2 - Mäßige Wärmebelastung - Grenzwert bis 35 °C (PET) 3 - Erhöhte Wärmebelastung - Grenzwert bis 38 °C (PET) 4 - Starke Wärmebelastung - Grenzwert bis 41 °C (PET) 5 - Extreme Wärmebelastung - Grenzwert über 41 °C (PET) -------------------------------------------------------------------- Generelle Modellierungsinformationen: Für die Modellierung wurde das Modell FITNAH-3D in einer Auflösung von 5 m genutzt. Als meteorologische Rahmenbedingung wird ein autochthoner Sommertag (wolkenloser Himmel, nur sehr schwach überlagernder Wind) angenommen. Bei dem Szenario der nahen Zukunft mit moderatem Klimaschutz (RCP 4.5) wird als Starttemperatur eine Lufttemperatur von 22,8 °C und eine Wassertemperatur von 21,5 °C angenommen unter Berücksichtigung der Stadtentwicklung mit Stadtentwicklungsflächen. Weiterführende Informationen und eine detaillierte Beschreibung der Methodik finden Sie in folgenden Berichten: 1. Stadtklimaanalyse Bremen - Teil A - Ergebnisse und Planungshinweise 2. Stadtklimaanalyse Bremen - Teil B - Fachliche Grundlagen und Analysemethodik
Der Klimawandel hat in der Arktis weitreichende direkte und indirekte Auswirkungen auf die Gesundheit der indigene und nicht-indigene Bevölkerung. Die Klima- und Wetterbedingungen der nördlichen Breiten und die jüngsten dramatischen Klimaveränderungen führen zu Temperaturextremen, die sich auf die soziale und wirtschaftliche Struktur der städtischen und ländlichen Gebiete auswirken werden. Eine eingehende Analyse dieser Veränderungen sollte sich sowohl mit den spezifischen natürlichen und sozialen Merkmalen befassen als auch mit den Anliegen der indigenen Bevölkerung. Das menschliche Wohlbefinden im Kontext von Klima- und Wetterextremen lässt sich mit dem Universal Thermal Climate Index (UTCI) erfassen. Während die Lufttemperatur allein ein guter Indikator für die aktuellen und zukünftigen Wetter- und Klimabedingungen ist, kann das Wohlbefinden durch starke Winde und hohe Luftfeuchtigkeit beeinflusst werden. Gerade in Küstengebieten verschärfen sich die klimatischen Situationen im Winter durch das Zusammenspiel von Wind und Kälte. Das Projekt zielt darauf ab, die aktuellen bioklimatischen Bedingungen zu identifizieren und mittels dem UTCI zu bewerten. Der Schwerpunkt liegt auf der thermischen Belastung für den menschlichen Körper und der Bewertung der sozialen Anfälligkeit, die sich aus den rezenten extremen klimatischen Schwankungen in der Arktis ergeben. Es werden auch die positiven Folgen der globalen Klimaerwärmung und der gesellschaftliche Nutzen aus diesen Veränderungen der nördlichen Breitengrade diskutiert. Zur Bestimmung der sozialen Verwundbarkeit und der sozialen Sensibilität und Anpassungsfähigkeit in den nördlichen Breiten berechnen wir den Social Vulnerability Index (SVI). Die SVI konkretisiert die sozialen Probleme, die sich aus dem fortschreitenden Klimawandel ergeben und liefert Erkenntnisse für die Entwicklung von Anpassungsstrategien in dieser Region. Um sich in die regionalen Details des SVI zu vertiefen, wird das sozioökonomische Umfeld der Gemeinden im Norden Norwegens als Fallstudie betrachtet. Die Ergebnisse des Projekts können als nützliches Instrument zur Minimierung von Bevölkerungsverlusten und zur Gewährleistung der sozialen Sicherheit in der Arktis dienen und politischen Entscheidungsträgern eine solide wissenschaftliche Grundlage für die Prävention und Eindämmung von Klimakatastrophen bieten, was für die Menschen in den nördlichen Gebieten äußerst wichtig ist in Zeiten des Klimawandels.
Derzeitige radar-basierte Nowcastingverfahren basieren auf der Annahme, dass die zeitliche Entwicklung von Hagelereignissen in erster Linie durch Advektionsvorgänge gesteuert ist; die relevanten physikalischen Prozesse, die für die Entstehung und das Größenwachstum von Hagel entscheidend sind, bleiben dabei unberücksichtigt. In Verbindung mit der komplexen internen Struktur und Dynamik von Hagelstürmen ergeben sich daraus große Unsicherheiten bei der Vorhersage der Hagelgrößenverteilung und der von Hagel betroffenen Fläche am Boden. Das Ziel des Projekts LIFT (Large Hail Formation and Trajectories) ist es, die Hagelentstehung und Hageltrajektorien besser zu verstehen, um daraus als wichtige Komponenten eines physikalisch-basierten Nowcastings erstmals ein radar-basiertes Verfahren für das Hagelwachstums zu entwickeln. Zu diesem Zweck wird im Rahmen von LIFT eine Messkampagne Süddeutschland durchgeführt, wo die größte Hagelwahrscheinlichkeit in Deutschland auf vielfältige Beobachtungssysteme trifft, die im Rahmen der Messkampagne Swabian MOSES mit einem dichten Netzwerk betrieben werden. Zum ersten Mal werden im Rahmen von LIFT moderne Radargeräte, In-situ Messgeräte, Fotogrammetrie und numerische Modellierung synergistisch kombiniert und ein umfassender Datensatz zur Rekonstruktion der zeitlichen Entwicklung des Hagelwachstums erstellt. Betroffene Bürger werden aktiv in die Messaktivitäten mit einbezogen und aufgerufen, Hagelkörnern einschließlich ihrer Haupteigenschaften in die WarnWetter App des DWD zu melden. Die Messkampagne mit ihrem mobilen und flexiblen Konzept beinhaltet die Anwendung neuer, innovativer Messtechniken, darunter Lagrangesche Trajektorien mittels kleiner Messsysteme, die in die Wolken eingebracht werden, und dronengesteuerte Luftbildaufnahmen zur Bestimmung der Hagelspektren. Aus Fernerkundungsdaten gewonnene Signaturen von Hagelereignissen liefern Informationen über die Charakteristika der Hagelereignisse und werden mittels numerischer Simulationen sorgfältig auf Messungenauigkeiten und Sensitivitäten bzgl. atmosphärischer Umgebungsvariablen evaluiert. Indikatoren für die Hagelentstehung und das Hagelwachstum werden aus Beobachtungsdaten und Simulationen identifiziert, und liefern die Grundlage für ein beobachtungs-basiertes Hagelwachstumsmodell. Schließlich wird dieses Multi-Parameter Hagelwachstumsmodell mit den bestimmten Hageltrajektorien und Schmelzprozessen kombiniert, um zu bestimmen, welche Prozesse am wichtigsten sind für das Nowcasting von Hagel. Das Projekt LIFT liefert damit einen wichtigen Betrag für zukünftige radar-basierte Hagelwarnsysteme mit einer verbesserten Vorhersagezeit und Vorhersagequalität.
Origin | Count |
---|---|
Bund | 1499 |
Europa | 63 |
Global | 2 |
Kommune | 10 |
Land | 596 |
Wirtschaft | 18 |
Wissenschaft | 158 |
Zivilgesellschaft | 42 |
Type | Count |
---|---|
Daten und Messstellen | 161 |
Ereignis | 16 |
Förderprogramm | 1003 |
Text | 162 |
Umweltprüfung | 1 |
unbekannt | 519 |
License | Count |
---|---|
geschlossen | 195 |
offen | 1272 |
unbekannt | 395 |
Language | Count |
---|---|
Deutsch | 1040 |
Englisch | 974 |
Resource type | Count |
---|---|
Archiv | 30 |
Bild | 22 |
Datei | 125 |
Dokument | 74 |
Keine | 875 |
Multimedia | 2 |
Unbekannt | 4 |
Webdienst | 24 |
Webseite | 795 |
Topic | Count |
---|---|
Boden | 1220 |
Lebewesen und Lebensräume | 1399 |
Luft | 1842 |
Mensch und Umwelt | 1847 |
Wasser | 1128 |
Weitere | 1827 |