Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.
Das sogenannte 'Climate Engineering' beschreibt ein gezieltes Eingreifen ins Klimasystem mit dem Ziel, der globalen Erwärmung entgegen zu wirken. Zusätzlich zu dem Entfernen von Kohlendioxid und der Beeinflussung von Solarstrahlung (solar radiation management), wurde eine Methode vorgeschlagen, die zu mehr Emission von langwelliger Strahlung in den Weltall führen soll. Hierbei soll der wärmende Effekt der Zirruswolken reduziert werden. Wir wollen diese Methode in unserem Forschungsantrag genauer untersuchen. Wir planen uns auf die mittleren und hohen Breiten der Nordhemisphäre im Winter zu konzentrieren, um die Strahlungseffekte von Zirren auf die Solarstrahlung zu minimieren. Insbesondere möchten wir folgender Frage nachgehen: Ist das Ausdünnen von arktischen Zirren im Winter (AWiCiT) durchführbar und was ist die maximale Abkühlung, die hiermit erreicht werden kann? Die hiermit verbundenen Risiken und Nebenwirkungen des AWiCiT wollen wir auf der regionalen Skala hinsichtlich möglicher Änderungen der arktischen Stratosphäre insbesondere Auswirkungen auf die Ozonschicht sowie mögliche Veränderungen in tiefer liegenden Wolken mit dem gekoppelten Wettervorhersage/Chemiemodell ICON-ART studieren. Mögliche Auswirkungen auf die globale Zirkulation, Meeresströmungen sowie die Meereisbedeckung werden mit Hilfe des globalen gekoppelten Aerosol-Atmosphären-Ozean Klimamodells MPI-ESM-HAM untersucht. Um die oben genannten Fragen zu beantworten, müssen wir die gegenwärtigen globalen Zirkulationsmodelle validieren insbesondere hinsichtlich ihrer Fähigkeit die beobachtete Ausbreitung und Höhe der Zirruswolken im arktischen Winter zu reproduzieren. Des Weiteren werden wir die Transportwege der natürlichen Eiskeime und der Impf-Eiskeime unten den dynamischen Bedingungen im arktischen Winter analysieren um die Lebensdauer der Impf-Eiskeime in der Impfregion abzuschätzen. Sind die Höhen und Flugrouten der kommerziellen Langstreckenflüge geeignet um einen Großteil des Arktischen Zirrus zu impfen oder sollte die Impfgegend in mittlere Breiten ausgedehnt werden? Ist Bismut(III)-iodid (BiI3), das als Impf-Eiskeim hierfür vorgeschlagen wird, unter diesen Umständen der am besten geeignete Impfstoff? Das Ausdünnen der Zirren ist nur dann effektiv, wenn der natürlich Zirrus hauptsächlich durch homogenes Gefrieren von Lösungströpfchen entsteht. Wenn er primär durch heterogene Nukleation gebildet werden würde, würde Impfen zu einer Erwärmung statt Abkühlung führen können. Deshalb müssen die Eigenschaften der Zirren noch besser verstanden werden, insbesondere der Anteil der Zirren, der im heutigen Klima durch heterogene Nukleation gebildet wird.
Wolken beeinflussen den Energiehaushalt durch Streuung des Sonnenlichts und Absorption der Wärmestrahlung der Erde und gelten daher als wichtiger Faktor im Klimasystem. Die Untersuchung von atmosphärischen Prozessen im Allgemeinen und der Eisnukleation im Besonderen ist von grundlegender Bedeutung für unser Verständnis der mit Wolkenbildung, Niederschlagsentwicklung und Wechselwirkung mit der Strahlung zusammenhängenden Mechanismen. Mineralstaub, der den größten Teil der atmosphärischen Aerosole ausmacht, kann bei geringen Sättigungen und Temperaturen, die über dem homogenen Gefrierpunkt liegen, Eisbildung initiieren und auf diese Weise die Wolkendynamik und auch die Mikrophysik sowie die Eigenschaften der Wolken beeinflussen. Trotz zahlreicher Untersuchungen zum Einfluss von Partikelgröße und Oberflächeneigenschaften von Eiskeimen wissen wir über die heterogene Eisnukleation auf molekularer Ebene immer noch sehr wenig. Übergeordnetes Ziel des vorliegenden Projektverlängerungsantrags ist die Untersuchung der Bedeutung von OH-Gruppen an den Oberflächen mineralischer Aerosolpartikel in heterogenen Eisnukleationsprozessen mit Hilfe der nichtlinearen optischen (NLO-)Spektroskopie und insbesondere der Summenfrequenzspektroskopie bei tiefen Temperaturen. Im DFG-Projekt AB 604/1-1 wurde bereits der Grundstein für das neue Forschungsfeld (Atmosphärische Oberflächenwissenschaft) am IMK-AAF des Karlsruher Instituts für Technologie (KIT) gelegt. Das Projekt hat deutlich gezeigt, dass sich die NLO-Spektroskopie für die Untersuchung von heterogenen Eisnukleationsprozessen auf molekularer Ebene eignet. Im Rahmen des hier vorgeschlagenen Projekts sollen daher im Wesentlichen Wasser und Hydroxylgruppen an den Oberflächen zweier atmosphärisch relevanter Mineraloxide mit unterschiedlichem Eisnukleationsvermögen (Feldspat und Quarz) während des heterogenen Gefrierens untersucht werden. Mit Hilfe der Summenfrequenzspektroskopie bei tiefen Temperaturen sollen die Grenzflächenwasser (flüssig und Eis) auf mineralischen Oberflächen analysiert sowie der Einfluss der OH-Gruppen an der Oberfläche auf den heterogenen Gefrierprozess bestimmt werden. Die hier geplanten Untersuchungen werden als Grundlage für eine deterministische Beschreibung des Prozesses des heterogenen Gefrierens an atmosphärischen Aerosolpartikeln mineralischen Ursprungs dienen. Solche Studien sind für unser Verständnis der atmosphärischen Prozesse und somit auch des Klimasystems von großer Bedeutung und darüber hinaus auch im Hinblick auf die lokale Wettermodifikation (z.B. Wolkenimpfung, Hagelabwehr) und die Klimaschutzpolitik von besonderem Interesse.
Zahlreiche Prozesse sind an der Entwicklung von Wolkensystemen unter leicht unterkühlten Bedingungen bis zu -10°C beteiligt. Das Zusammenspiel von Thermodynamik, Wasserdampf und Aerosolpartikeln steuert die Verteilung von Flüssigwasser und Eis, die Niederschlagsbildung und die Strahlungseigenschaften. Das Projekt PolarCAP zielt darauf ab, die komplexen Zusammenhänge aufzulösen, indem die Entwicklung der Eisphase unter leicht unterkühlten Bedingungen in einer thermodynamisch und aerosol-kontrollierten natürlichen Umgebung mittels Radarpolarimetrie und Spectral-Bin Modellierung untersucht wird. Zielobjekt der Studie sind flüssigwasserdominierte, unterkühlte stratiforme Wolken, die sich im Winter häufig im Temperaturbereich von -10 bis 0°C über dem Schweizer Plateau bilden. Im Rahmen des externen ERC-Forschungsprojekts CLOUDLAB werden Drohnen eingesetzt, um diese Wolken mit definierten Mengen verschiedener Arten von eisnukleierenden Partikeln, wie Silberjodid oder Snowmax, zu impfen. Die anschließend gebildete Eisphase und die Auflösung der Flüssigphase werden im Rahmen von CLOUDLAB mit Hilfe von In-situ-Messungen und einem Standardsatz von Fernerkundungsinstrumenten wie Lidar und LDR-Wolkenradar charakterisiert. Konkretes Ziel von CLOUDLAB ist, die 1- und 2-Momenten-Parametrisierungen der Eisphase des Wettervorhersagemodells ICON zu verbessern. PolarCAP wird mit dem CLOUDLAB-Projekt zusammenarbeiten, um diesen einzigartigen Datensatz durch die Anwendung modernster polarimetrischer Radar- und Lidar-basierter Fernerkundungstechniken zur Bestimmung der mikrophysikalischen Eigenschaften von Wolken sowie durch die Anwendung wolkenauflösender Spektral-Bin Modellierung zu verbessern und zu nutzen. Synergistische, mehrwellenlängen- und polarimetrische bodengebundene Fernerkundung mit scannendem Radar und Lidar wird eingesetzt, um den Übergang von unterkühlten flüssigen stratiformen Wolken in Mischphasenwolken zu beobachten. Begleitet von wolkenauflösenden Modellsimulationen und Radar-Forward-Operatoren wird PolarCAP die Entwicklung und die beteiligten mikrophysikalischen Prozesse zwischen -10 und 0°C erfassen. Die kombinierten Beobachtungen werden neue Erkenntnisse über das Zusammenspiel von Kontakt- und Immersionsgefrieren, sekundärer Eisbildung und Eisvervielfachung liefern, indem Wolken in verschiedenen Temperaturregimen untersucht werden, von denen angenommen wird, dass sie entweder von spezifischen Eisphasenprozessen beeinflusst bzw. unbeeinflusst sind. PolarCAP wird das derzeitige Verständnis wolkenmikrophysikalischer Prozesse und deren Darstellung in atmosphärischen Modellen herausfordern und die wolkenauflösende Modellierung und deren Kopplung an Radarvorwärtsoperatoren vorantreiben. Insgesamt wird PolarCAP Fortschritte in unseren Fähigkeiten erzielen, die Effizienz verschiedener eisbildender Substanzen besser einschätzen zu können und die Zeitskalen von mikrophysikalischen Prozessen und dem Lebenszyklus von Stratusbewölkung zu verknüpfen.
Absenkung der CO2 Emissionen, Anpassung und 'Climate Engineering' (CE) werden allgemein als drei unabhängige Vorgehensweisen gegen die negativen Auswirkungen des Klimawandels angesehen. Im Rahmen dieses Projektes zeigen wir die Grenzen des 'Solar Radiation Management' (SRM) durch Sulfataerosol-Eintrag in die Stratosphäre (SAI) und marine Wolkenimpfung (MCB) als Maßnahmen zur Reduktion der globalen bzw. regionalen Temperatur auf. Zum ersten Mal werden dabei die Auswirkungen von gleichzeitig ausgeführtem SAI und MCB umfassend quantifiziert. Wir vermuten, dass die Begrenzung der Wirksamkeit von SAI und MCB bedeutende Auswirkungen auf die rechtliche und politische Betrachtung hat, die das Zusammenwirken und die zeitliche Reihenfolge von Emissionsminderungs-, Anpassungs-, und 'Climate Engineering'- Maßnahmen sowie die Politik der Klimagerechtigkeit bestimmen. Komplexe globale und regionale numerische Simulationsmodelle der Atmosphäre, die dem Stand des Wissens entsprechen, und die eine detaillierte Beschreibung der Atmosphärenphysik und Chemie beinhalten, stellen das wesentliche Werkzeug für die Quantifizierung der Effekte dieser Maßnahmen dar. Die Ergebnisse erlaube es die physikalischen Grenzen der angedachten Maßnahmen zu bestimmen. Die Ergebnisse des Vorhabens dienen als wichtige Grundlagen für andere Projekte im SPP, um eine integrale Bewertung von 'CO2 Mitigation, Adaption und Climate Engineering' zu ermöglichen.
Eine verlässliche Modellierung der Wolkenprozesse für die Wetter- und Klimavorhersage bedarf eines fundierten Verständnisses der Eisbildung in Mischphasenwolken. Jedoch überschreiten in situ gemessene Eiskristallkonzentrationen oft die Konzentration der eisnukleierenden Partikel um mehrere Größenordnungen. Motiviert durch diese Diskrepanz sucht die Atmosphärenforschungsgemeinschaft nach Sekundären Eisbildungsmechanismen (SIP), d.h. Prozessen, bei denen zusätzliche Eispartikel zum Beispiel durch Fragmentierung vorhandener Eispartikel oder während des Tropfengefrierens gebildet werden.In Zusammenarbeit zwischen dem Leibniz-Institut für Troposphärenforschung (TROPOS) in Leipzig und dem Institut für Meteorologie und Klimaforschung des Karlsruher Institutes für Technologie (KIT) planen wir, zwei mögliche SIP Mechanismen zu untersuchen: die Bildung von sekundären Eispartikeln, verursacht durch (A) Tropfen-Eispartikel Kollisionen (Eissplitterentstehung) und (B) dem Zersplittern gefrierender Tropfen. Es wird angenommen, dass diese zwei SIP Mechanismen in Mischphasenwolken besondere Relevanz besitzen.Folgende Hauptziele wird das geplante Projekt umfassen: (1) die Entwicklung eines neuen experimentellen Aufbaus (Ice Droplet splintEring and FragmentatIon eXperiment, IDEFIX), um die Bildung sekundärer Eispartikel durch (A) und (B) zu untersuchen, (2) die Identifizierung des physikalischen Mechanismus der sekundären Eisbildung mittels Hochgeschwindigkeitsvideoüberwachung eines SIP Ereignisses, (3) die Quantifizierung der Anzahl sekundärer Eispartikel in Abhängigkeit von der Temperatur, Tropfengröße und Aufprallgeschwindigkeit (A) und von der Tropfengröße und -zusammensetzung (B), und (4) die Entwicklung von Parametrisierungen beider SIP Mechanismen (A) und (B). Diese Parametrisierungen werden von externen Kooperationspartnern in Modellen, die Wolkenmikrophysik auflösen, für die Beschreibung der SIP Mechanismen angewendet.Bei der Entwicklung von IDEFIX werden wir von der langjährigen Erfahrung beider Kooperationspartner profitieren: die Expertise des TROPOS Teams bzgl. der Tropfen-/Eisbildung und des Tropfen-/Eispartikelwachstums und Verdunstung in einem wohl definierten thermodynamisch kontrollierten System, sowie der Detektion dieser Hydrometeore, und der Expertise des KIT Teams für die Hochgeschwindigkeitsvideobeobachtung von freischwebenden gefrierenden Tropfen. Das modulare Design von IDEFIX ermöglicht es beiden Kooperationspartnern ihre Möglichkeiten für die Modulentwicklung vor Ort auszuschöpfen und dann beim Experimentieren in einer Reihe von Messkampagnen, die am TROPOS durchgeführt werden, zusammenzuführen.
Arctic climate change increases the need of a growing number of stakeholders for trustworthy weather and climate predictions, both within the Arctic and beyond. APPLICATE will address this challenge and develop enhanced predictive capacity by bringing together scientists from academia, research institutions and operational prediction centres, including experts in weather and climate prediction and forecast dissemination. APPLICATE will develop a comprehensive framework for observationally constraining and assessing weather and climate models using advanced metrics and diagnostics. This framework will be used to establish the performance of existing models and measure the progress made within the project. APPLICATE will make significant model improvements, focusing on aspects that are known to play pivotal roles in both weather and climate prediction, namely: the atmospheric boundary layer including clouds; sea ice; snow; atmosphere-sea ice-ocean coupling; and oceanic transports. In addition to model developments, APPLICATE will enhance predictive capacity by contributing to the design of the future Arctic observing system and through improved forecast initialization techniques. The impact of Arctic climate change on the weather and climate of the Northern Hemisphere through atmospheric and oceanic linkages will be determined by a comprehensive set of novel multi-model numerical experiments using both coupled and uncoupled ocean and atmosphere models. APPLICATE will develop strong user-engagement and dissemination activities, including pro-active engagement of end-users and the exploitation of modern methods for communication and dissemination. Knowledge-transfer will also benefit from the direct engagement of operational prediction centres in APPLICATE. The educational component of APPLICATE will be developed and implemented in collaboration with the Association of Early Career Polar Scientists (APECS).
Unser Projekt zielt darauf ab die Klimaänderungen in der Arktis zuverlässig zu quantifizieren und zwar auf der Basis einer detaillierten Analyse von langjährigen Stationsdaten (z.B. in Spitzbergen, auf russischen Driftstationen und Bojen) sowie Satellitendaten (z.B. von CryoSat-2). Die beobachteten Trends in meteorologischen Parametern (z.B. Lufttemperatur und Feuchte, kurz- und langwellige Strahlung) und Meereisparametern (Ausdehnung, Drift, Dicke) und die Zusammenhänge zwischen atmosphärischen und ozeanischen Bedingungen werden wir nutzen, um Simulationen mit dem regionalen gekoppelten Atmosphäre-Eis-Ozean-Klimamodell der Arktis HIRHAM-NAOSIM zu evaluieren. Um unser Verständnis der Prozesse und Rückkopplungen zu vertiefen, werden Modellsensitivitätsstudien arktischer Schlüsselprozesse (z.B. Meereisalbedo, Oberflächenrauhigkeit, Mischphasenwolken) durchgeführt, die dann die Darstellung dieser Prozesse in regionalen und globalen Klimamodellen (ECHAM6, ECHAM6-FESOM) verbessern. Darüber hinaus werden wir untersuchen, wie diese Schlüsselprozesse und ihre Änderungen das Wetter und Klima in Eurasien beeinflussen und welche Mechanismen hier zugrunde liegen. Zusätzlich wird untersucht, wie z.B. Meereisanomalien die Zyklonen-Zugbahnen, die großskaligen atmosphärischen Wellenmuster, den Strahlstrom und damit extreme Wetterereignisse in mittleren Breiten (z.B. winterliche Kälteperioden) verändern können. Extreme Wettereignisse wie z.B. starke Stürme und die damit verbundene Meereisdrift und -deformation können sozioökonomische Auswirkungen haben, und z.B. die Schiffbarkeit der Nordostpassage beeinflussen. Für verschiedene Szenarien werden daher Navigationsrisiken und Kriterien von Meereisbedingungen berechnet und so mögliche Folgen des Klimawandels abgeschätzt. Klimatische Veränderungen, insbesondere der Meereisbedeckung, beeinflussen auch die pelagischen Ökosysteme.
Origin | Count |
---|---|
Bund | 36 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 36 |
License | Count |
---|---|
offen | 36 |
Language | Count |
---|---|
Deutsch | 24 |
Englisch | 20 |
Resource type | Count |
---|---|
Keine | 27 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 31 |
Lebewesen & Lebensräume | 35 |
Luft | 35 |
Mensch & Umwelt | 36 |
Wasser | 35 |
Weitere | 36 |