<p>Seit 1881 hat die mittlere jährliche Niederschlagsmenge in Deutschland um rund 9 Prozent zugenommen. Dabei verteilt sich dieser Anstieg nicht gleichmäßig auf die Jahreszeiten. Vielmehr sind insbesondere die Winter deutlich nasser geworden, während die Niederschläge im Sommer geringfügig zurückgegangen sind.</p><p>Teilweise sehr regenreiche Jahre seit 1965</p><p>Die Zeitreihe der jährlichen Niederschläge in Deutschland (Gebietsmittel) zeigt einen leichten Anstieg, der mit einer Irrtumswahrscheinlichkeit von 5 % statistisch signifikant ist. Dieser Anstieg ist im Wesentlichen darauf zurückzuführen, dass bis etwa 1920 nur selten überdurchschnittlich niederschlagsreiche Jahre aufgetreten sind. Im Anschluss an eine Übergangsphase mit mehreren leicht überdurchschnittlich feuchten Jahren traten ab Mitte der 1960er Jahre dann auch einige sehr regenreiche Jahre auf (siehe Abb. „Mittlere jährliche Niederschlagshöhe in Deutschland 1881 bis 2024). Dies entspricht genau der Zeit, seit der die Auswirkungen des Klimawandels global deutlich zu beobachten sind. Im globalen Durchschnitt steigt mit den Temperaturen auch die <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a> von Wasser an, was in der globalen Summe zu größeren Niederschlagsmengen führt, jedoch mit regional und saisonal sehr großen Unterschieden - von Dürren bis Überschwemmungen.</p><p>Seit 2011 wurden in Deutschland einige ausgesprochen trockene Jahre beobachtet. In den Jahren 2023 und 2024 wurde jedoch überdurchschnittlich viel Niederschlag registriert. Der Niederschlagsüberschuss im Jahr 2024 resultierte vor allem aus den Monaten Februar, Mai und September. Im Mai kam es in Rheinland-Pfalz und im Saarland in Folge von Schauern und Gewittern zu Überschwemmungen. Ende Mai und Anfang Juni führten viele Flüsse in Baden-Württemberg und Bayern nach langanhaltenden Niederschlägen Hochwasser.</p><p>Noch stärker als bei den mittleren Temperaturen ist dieser Trend also nicht gleichmäßig in allen Jahreszeiten ausgeprägt. Er beruht im Wesentlichen darauf, dass die mittleren Winterniederschläge zugenommen haben. Im Winter 2023/2024 lag mit 279,7 mm Niederschlag die Abweichung zum historischen Referenzzeitraum 1881-1910 bei +131,5 mm. Frühling und Herbst zeigen ebenfalls eine leichte, aber im Gegensatz zum Winter nicht signifikante Zunahme, während die Niederschläge im Sommer geringfügig zurückgegangen sind (siehe nachfolgende Tabellen und Abbildungen).</p><p>Bemerkenswert ist aus klimatologischer Sicht, dass mit den Jahren 2023 und 2024 die Serie von sehr trockenen Jahren unterbrochen wurde. Mit dem Juni bzw. September wurden jeweils die niederschlagsreichsten 12-Monatsperioden beobachtet. Am Ende des Jahres lagen die Niederschlagsmengen wieder unter dem Durchschnitt</p><p>Mit 902 mm belegt 2024 auf der Rangliste der nassesten Jahre seit 1881 den 12. Platz (siehe Karte „Jährliche Niederschläge in Deutschland im Jahr 2024").</p><p>Bei der Betrachtung der Einzelmonate sind erhebliche Unterschiede erkennbar: Im Jahresverlauf wiesen 8 Monate überdurchschnittliche Niederschlagsmengen auf (Januar, Februar, April, Mai, Juni, Juli, September, Oktober) und 4 Monate unterdurchschnittliche Niederschläge (März, August, November, Dezember). Über das Jahr ergibt sich ein Niederschlagsüberschuss von 14 %.</p><p>Und auch regional unterscheidet sich die Niederschlagsverteilung im Jahr 2024 sehr stark: Besonders die Bundesländer im Nordwesten (Schleswig-Holstein, Niedersachsen, Rheinland-Pfalz) erreichten Platzierungen unter den zehn nassesten Jahren, während Sachsen nur auf Platz 88 von 144 Jahren landete (siehe Karte „Veränderung der jährlichen Niederschläge in Deutschland im Jahr 2024).</p><p><em>Wir danken dem</em><a href="https://www.dwd.de/DE/Home/home_node.html"><em>Deutschen Wetterdienst</em></a><em>für die Bereitstellung der Daten.</em></p>
Die vorliegende Vegetationsstruktur des Grünvolumens basiert auf einem Zwischenergebnis aus dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014. Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Die ökologische Wirksamkeit des städtischen Grüns ist im besonderen Maße von der vorliegenden Vegetionsstruktur abhängig. So besitzt niedrige Vegetation (Rasen und Wiesen) vor allem in den Abend- und Nachtstunden eine abkühlende Wirkung, während hohe Vegetation (mittlere bis große Bäume) vorwiegend am Tag zu einer Absenkung der klimatischen Belastung beiträgt, aber zugleich die Belüftung negativ beeinträchtigen kann. Mittlere Vegetation (Sträucher, Stauden, Hecken und kleine Bäume) verfügt ebenso wie die hohe Vegetation über ein hohes Maß an Staubbindevermögen aus der Luft, während niedrige Vegetation vorwiegend Staub- und Gasteile aus den Niederschlägen bindet und aufgrund der hohen Versickerungsleistung einen großen Anteil zur Grundwasserneubildung beiträgt (siehe auch Metadaten zur Planungshinweiskarte Stadtklima). Hintergrund: Für die Grünvolumenbestimmung war es zwingend erforderlich, Vegetation von anthropogenen Objekten mit einer relevanten Höhe über dem Boden, wie Gebäuden, Laternen, Fahrzeugen etc. zu trennen. Gleichzeitig war für die Anwendung der Kronenformkorrektur (nur auf Laubbäume) und des pauschalen Aufschlages für Rasen und Ackerflächen eine weitere Differenzierung nach Vegetationstypen erforderlich. Folgende Vegetationstypen sollten voneinander getrennt werden: - Laubbaum - Nadelbaum - Sträucher - Rasen - Acker. Datengrundlage/Methodik: Grundlage der Bestimmung der Vegetationsstruktur (als Zwischenergebnis der Grünvolumenbestimmung) sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Klassifizierung der Vegetationsstruktur des Grünvolumens: - Value 0: vegetationslos => (farblos oder weiß) - Value 1: Laubbaum => (grün) - Value 2: Nadelbaum => (dunkelgrün) - Value 3: Sträucher => (braungrün) - Value 4: Rasen, Wiesen und sonstige niedrige Vegetation => (gelbgrün/hellgrün) - Value 5: Acker => (gelbgrün/hellgrün)
Achtung: Dieser Datensatz wird gelöscht. Möglicherweise stehen nicht mehr alle Funktionen vollumfänglich zur Verfügung. Schon vor Jahrtausenden begannen Menschen die Landschaft zu verändern: Sie rodeten Land, stauten Bäche auf, entwässerten Moore, pflanzten Bäume, errichteten Deiche, düngten Wiesen oder bauten Siedlungen, Straßen und Schienen. Durch die jeweilige Nutzungsart änderte sich im Verlauf der Geschichte auch der Landschaftscharakter. Die von Menschen geprägten, gestalteten oder beeinflussten Landschaften werden Kulturlandschaften genannt. Die Metropolregion Hamburg ist durch unterschiedliche Kulturlandschaften geprägt. Die bekanntesten Beispiele dafür sind wohl die Lüneburger Heide und das Alte Land. Weitere Informationen hierzu finden Sie auf den Seitender Metropolregion Hamburg unter: http://metropolregion.hamburg.de/historische-kulturlandschaften/nofl/4433528/historische-kulturlandschaften/ und http://metropolregion.hamburg.de/natur/4338774/kulturlandschaften-karte/
Etwa 20 km vor der deutsch-niederländischen Grenze fließt der Niederrhein von Süden in einer scharfen Kurve nach Westen. Am Ende dieses Reeser Rheinbogens liegt bei Rhein-km 837 die kleine namensgebende Stadt Rees unmittelbar am rechten Flussufer. Die Stadtmauern widerstehen hier seit Jahrhunderten den Fluten des Stroms. Wegen des eingeengten Flussquerschnitts haben insbesondere extreme Hochwasser in der Vergangenheit eine tiefe Erosion der Rheinsohle von mehreren Metern verursacht. Ein im Jahr 1998 begonnener Kolkverbau verhindert die weitere Tiefenerosion. Aber um das Problem nachhaltig zu beherrschen, hat die Wasser- und Schifffahrtsverwaltung des Bundes (WSV) bereits in den 1990er-Jahren mit der Planung einer Flutmulde begonnen. Die Planungsarbeiten für die Flutmulde erstreckten sich über nahezu zwei Jahrzehnte und wurden durch umfangreiche Modelluntersuchungen der BAW begleitet. Zu Beginn der 1990er-Jahre galt es zunächst, aus verschiedenen möglichen Varianten den optimalen Korridor für die Trassierung der Flutmulde auszuwählen. Die nun im Bau befindliche Flutmulde durchsticht den Reeser Rheinbogen mit einer Breite von 150 m bis 180 m linksrheinisch auf einer Länge von rund 3 km. Der Rhein erhält dadurch einen gewaltigen Nebenarm, der ab einem Wasserstand von 80 cm über Mittelwasser zur Entlastung des Hauptstroms führt. Der Zustrom zur Flutmulde wird durch eine stromaufwärts gelegene Überlaufschwelle geregelt. Bei extremem Hochwasser steigt der Abfluss durch die Flutmulde auf rund 18 % des Gesamtabflusses im Rhein an. Hierdurch wird die Erosion in diesem Rheinabschnitt vor den Stadtmauern von Rees deutlich gemindert. Außerdem wird bei extremen Hochwasserereignissen der Wasserspiegel um etwa 10 cm abgesenkt. Die Baukosten liegen bei 50 Millionen Euro, an denen sich das Land Nordrhein-Westfalen mit 4 Millionen Euro beteiligt. Neben der hydraulischen Funktion mussten insbesondere ökologische Vorgaben berücksichtigt werden, um die ökologisch hochsensiblen Naturräume nicht zu beeinträchtigen. Denn die Flutmulde liegt nicht nur in einem Landschaftsschutzgebiet des Kreises Kleve und einem Naturschutzgebiet des Kreises Wesel, welches zwei Fauna-Flora-Habitat-Areale beinhaltet, sondern gehört auch zum EU-Vogelschutzgebiet und dem 'Feuchtgebiet von internationaler Bedeutung Unterer Niederrhein' (RAMSAR-Konvention, UNESCO). Um dieser Bedeutung gerecht zu werden, wird die Flutmulde naturnah gestaltet, soweit dies mit der wasserbaulichen Funktion und der Standsicherheit des Bauwerks vereinbar ist. So werden im Umfeld der Nebenrinne Feuchtwiesen geschaffen und die Ufer durch die initiale Anpflanzung von Röhricht in ingenieurbiologischer Bauweise gesichert. Text gekürzt
Ziel des Projektes ist die aktuelle Bestandserfassung dieser geheimnisvollen, nachtaktiven, hochgradig gefährdeten Vogelart, die nur noch in ausgewählten Landschaftsbereichen Sachsen-Anhalts nennenswerte Brutbestände aufweist. Für viele Menschen ist der nur wenig mehr als drosselgroße, braun gefärbte Wachtelkönig nur ein 'Phantom, da er sich nur äußerst selten außerhalb der dichten Wiesenvegetation aufhält. Dabei kannte man die aufgrund ihrer Lautäußerungen volkstümlich als 'Wiesenknarrer bezeichnete Rallenart früher als häufigen Vogel der Wiesen in Flussauen. Der Wachtelkönig (sein lateinischer Name 'Crex crex ist dem lauten Ruf des Männchens nachempfunden) verdient heute unsere volle Aufmerksamkeit. Er leidet, wie kaum ein anderer, unter intensiver Landwirtschaft, Grünlandumbruch und Grundwasserabsenkung sowie der Zersiedelung und Eindeichung einst großflächiger Überschwemmungsgebiete und zählt mittlerweile zu den global gefährdeten Vogelarten. Die Mahd oder Beweidung in den Brutgebieten der Art, die aufgrund des Klimawandels und dem zeitigen Absinken der Wasserstände zunehmend schon im Mai und Juni stattfinden, bedeuten vielfach den Verlust des Nestes oder den Tod der Jung- und Altvögel, welche Weidetieren oder Mähgeräten nicht rechtzeitig ausweichen können. Der Bestand der Art umfasst in Sachsen-Anhalt nach aktuellen Hochrechnungen vermutlich nicht mehr als 100 bis 150 rufende Männchen, deren Stimme zwischen Mitte Mai und Ende Juni nachts aus Flussauen der Saale, Elster, Elbe und Havel erschallt. Die Vögel versuchen mit ihrer minutenlang vorgetragenen Rufreihe überfliegende Weibchen anzulocken. Deshalb sind die Rufe sehr laut und können auch vom Menschen unter guten Bedingungen bis in einbem Kilometer Entfernung noch gehört werden. Einige Vögel nutzen neben Feuchtgrünländern aber auch Brachen, ungenutzte Gewerbegebiete, Äcker und Röhrichte zur Brut, weshalb in Sachsen-Anhalt - mit Ausnahme des Hochharzes, der Wälder und Trockengebiete sowie Ortschaften - nahezu flächendeckend nach der Art gesucht werden soll. Besonders in den Europäischen Vogelschutzgebieten, von denen im Land mehr als ein Dutzend von der Art besiedelt werden, will der NABU alles daran setzen, die Brutbedingungen für die Art entscheidend zu verbessern. Eine punktgenaue Kartierung der rufenden Männchen ist nötig, um gemeinsam mit den zuständigen Naturschutzbehörden und dem jeweiligen Landwirt Nestschutzzonen festzulegen, in denen die Weibchen ungestört brüten und ihre bis zu zehn Jungen großziehen können. Wie Studien aus England belegen, kann damit der Bestand der seltenen und gefährdeten Art nachhaltig positiv beeinflusst werden.
Hintergrund: Dieses Projekt begleitet die Umgestaltung eines Fichtenwald-Reinbestandes im Nationalpark Eifel vom derzeitigen Ist-Zustand über eine Baumentnahme hin zu einem standortgerechten Laubmischwald. Der Stoffhaushalt (Kohlenstoff, Lösungsfracht, Schwebfracht, Bachgeschiebe und Wasser) sowie die ihn beeinflussenden Faktoren (Klima, Boden, Vegetation, Landnutzung) werden genauer untersucht. Erstmalig werden für dieses Gebiet im Rahmen dieses Projektes CO2-Kreisläufe quantifiziert und Maßnahmen zur Kohlenstoffreduktion beschrieben (durch das Institut für Chemie und Dynamik der Geosphäre - Institut 4: Agrosphäre (ICG-4)). Zudem sollen zu erwartende Veränderungen auf Stoff- und Wasserkreisläufe erfasst werden. Bestehende Datenlücken für die Mittelgebirge werden damit geschlossen (durch den Lehrstuhl für Physische Geographie und Geoökologie (PGG)). Fragestellungen: Aufgabe des Projektes wird sein, präzise Informationen zum Stoff- (u.a. Kohlendioxid, Nitrat, Phosphat, Ammonium) und Wasserkreislauf zu erhalten sowie die Bedeutung standortrelevanter Parameter (Klima, Boden, Vegetation, Landnutzung) bei der Entstehung eines standorttypischen Laubmischwaldes zu erfassen. Während der Umwandlung eines Fichtenreinbestandes zu einem Laubwald - mit Vergleichsuntersuchungen im Freiland (Wiese) - sollen verschiedene Stadien der Umwandlung untersucht werden. Die Ergebnisse werden neue und vor allem quantifizierbare Erkenntnisse zum CO2-Haushalt sowie zum Wasser- und Stoffkreislauf im Ökosystem Wald liefern; Grundbausteine für eine nachhaltige Landnutzung und der Reduzierung atmosphärischen CO2. Von der Arbeitsgruppe PGG und dem ICG-4 bearbeitete Fragestellungen: - Wie wirken sich Landnutzungsänderungen auf Stoff- und Wasserhaushalt aus? - Welche Auswirkungen hat der Klimawandel auf Wasser, Boden und Vegetation? - Wie wirken sich Rückkopplungsprozesse auf terrestrische Systeme aus? - Wie wirken sich großräumige Eingriffe aus? Ziele: Ziele des Lehrstuhls für Physische Geographie und Geoökologie sind insbesondere, in Kooperation mit dem ICG-4 Veränderungen des Kohlenstoff- und Wasserhaushaltes sowie der Nährstoffkreisläufe in Erwartung des absehbaren Klimawandels und der Maßnahmen zur CO2-Reduktion zu erfassen. Gesicherte Erkenntnisse in Bezug auf den Wasserhaushalt und die ihn beeinflussenden Größen in Mittelgebirgsräumen liegen bisher kaum vor. Hier schließt das Projekt eine Datenlücke. Die Rolle der Vegetation sowie der Böden (insbesondere die bodenbildenden periglazialen Deckschichten) sind hier von Bedeutung, da Prozesse der Stoffakkumulation, -umwandlung und -transport von diesen Parametern stark abhängig sind. Deckschichten haben mit ihren Mächtigkeiten und Ausprägungen einen starken Einfluss auf Sickerwasser, Grundwasserneubildung, Retention und Oberflächenabfluss. Zudem ist für die Kooperation mit dem ICG-4 die Betrachtung des Bodenwasserhaushaltes unerlässlich, um den CO2-Vorrat im Boden zu analysieren. Die Retentionskapazitäten der Böden werden präzi
Untersuchungen ueber die Wirkung des Wiesenbrueterprogrammes auf Lebensraeume und Bestandsentwicklung wiesenbruetender Vogelarten unter besonderer Beruecksichtigung des Grossen Brachvogels. Untersuchungen der Gemeinschafts- und Populationsstrukturen wiesenbruetender Vogelarten. Untersuchungen zur Entomo- und Amphibienfauna. Vegetationskundliche Untersuchungen.
The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.
Das Jena Experiment hat es sich zum Ziel gesetzt Zusammenhänge zwischen Pflanzendiversität und Ökosystemprozessen zu untersuchen. Unsere Arbeiten beschäftigen sich mit einer der Schlüsselgruppen in unterirdischen Ökosystemprozessen - den Pilzen. Das Wirtsspektrum arbuskulärer Mykorrhizapilze (AMF) wird innerhalb der Monokultur-Plots untersucht. In Polykulturen unterschiedlicher Diversität soll der Zusammenhang zwischen Artenreichtum von Pflanzen und AMF vertiefend studiert werden. Durch ein Experiment mit stabilen Isotopen soll der Beitrag der AMF für die Nährstoffverteilung zwischen einzelnen Pflanzenarten, aber auch zwischen funktionellen Gruppen näher beleuchtet werden. Weiterhin wird untersucht, ob Zusammenhänge zwischen Stickstoffmineralisierung, Anreicherung organischer Substanzen sowie der Diversität und dem Expressionsprofil pilzlicher Laccasegene bestehen.
Bedeutung des Projekts für die Praxis: Landwirtschaft: Das Projekt ist für den Erhalt der traditionellen Kulturlandschaft in der Region, dem Erhalt der Artenvielfalt und der (geschützten) Lebensräume von sehr großer Bedeutung. Der Nutzen für die Landwirtschaft ist durch die Verwertung des Mähgutes in den Ställen gegeben. Forstwirtschaft: Auwaldreste werden erhalten und gepflegt (Beseitigung invasiver Neophyten) und dienen als Schutzzone zu Infrastruktureinrichtungen (Straße, Bahn) Wasserwirtschaft: Natürliche Retentionsflächen, Ausgleich Wasserhaushalt Umwelt: erhalt und Pflege wertvoller geschützter Lebensraumtypen, grüne Infrastruktur an der Grenze zu Natura 2000 Gebieten; Nutzung als Naherholungsraum und für Forschungs- und Bildungszwecke im Umkreis von vielen Schulen (Exkursionen, Freiluftklassenzimmer, Praktika, Aktivworkshops, Monitoring, Maturaarbeiten, Projektunterricht, etc.) Die HBLFA Raumberg-Gumpenstein ist Netzwerknoten für die Zusammenarbeit mit den unterschiedlichen Institutionen. Förderpragramme zielen auf den Erhalt und Erweiterung von Feuchtflächen (als grüne und blaue Infrastruktur) hin. Das Projekt soll als Best Practice dienen und weitere Landbewirtschafter motivieren, in Iriswiesen zu investieren (mit entspr. Unterstützung). Die Feuchtwiesen rund um den Grimming sind als Intensivackerfläche nicht geeignet denn alle 5-10 Jahre werden diese trotz Regulierungsmaßnahamen regelmäßig überflutet. Verbesserung des Flächenmanagements, Koordination der Maßnahmen und Öffentlichkeitsarbeit Körperschaften öffentl. Rechts wie z.B. Berg- und Naturwacht, Wassergenossenschaften, Naturschutzbund: Mitwirkung Pflege und Betreuung (insbes. Neophyten) Landbewirtschafter der Umgebung: Wissenstransfer Best Practice, Anleitungen, Erfahrungsaustausch, Bewusstseinsbildung Öffentlichkeit. Zielsetzung: Erweiterung bzw. Revitalisierung der Iriswiesen und standortsprägende Naturlebensraumtypen Grüne und blaue Korridore innerhalb und außerhalb der Natura 2000 Schutzgebiete (ca. 4 Hektar) (Gemeinde Stainach-Pürgg) Verlust der Artenvielfalt entgegen durch verbesserte nachhaltig ökologische Landnutzung und Best Practice Management für Feuchtwiesen im Oberen Steirischen Ennstal Erhalt, die Wiederherstellung und die Verbesserung der Artenvielfalt und die für die Region prägenden Lebensraumtypen. Unterstützung der Grundbesitzer durch Best Practice und Motivation sowie Hilfestellung bei ähnlichen Umsetzungsideen. Zusammenarbeit aller Interessengruppen, Motivation zu ehrenamtliches, gemeinsames Arbeiten für die Natur Schaffung eines Bioinventars zum Anschauen (Grüne Insel als Naherholung für den sanften Tourismus und als Freiluftlabor). Gemeinsame regionale Strategie zur Verbesserung und Erweiterung der Feuchtlebensräume Bewusstseinsbildung bei Landnutzern und Bevölkerung zum Erhalt und Aufwertung der Artenvielfalt in den Schutzgebieten und außerhalb. Aktive Beteiligung der Öffentlichkeit.
Origin | Count |
---|---|
Bund | 1313 |
Kommune | 85 |
Land | 1164 |
Wissenschaft | 52 |
Zivilgesellschaft | 31 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Daten und Messstellen | 349 |
Ereignis | 28 |
Förderprogramm | 692 |
Infrastruktur | 12 |
Lehrmaterial | 6 |
Taxon | 36 |
Text | 685 |
Umweltprüfung | 66 |
WRRL-Maßnahme | 77 |
unbekannt | 513 |
License | Count |
---|---|
geschlossen | 1283 |
offen | 1071 |
unbekannt | 104 |
Language | Count |
---|---|
Deutsch | 2292 |
Englisch | 690 |
Resource type | Count |
---|---|
Archiv | 53 |
Bild | 111 |
Datei | 315 |
Dokument | 514 |
Keine | 1023 |
Multimedia | 2 |
Unbekannt | 28 |
Webdienst | 157 |
Webseite | 927 |
Topic | Count |
---|---|
Boden | 1536 |
Lebewesen und Lebensräume | 2457 |
Luft | 1011 |
Mensch und Umwelt | 2457 |
Wasser | 1335 |
Weitere | 2221 |