This meta data entry describes the measurement data from the mobile EC tower of the IBG-3 (FZJ) that was set up in Kleinhau during the 2020 MOSES campaign.
The dataset contains an urban weather record from the hydro-meteorological monitoring station of the Institute of Geographical Sciences at the Freie Universitaet Berlin (working group Applied Geography, Environmental Hydrology and Resource Management; Geo Campus Lankwitz, Malteserstraße 74-100, 12249 Berlin). The station is located at an elevation of 45 m a.s.l. and consists of a 7.5 x 7.5 m wide fenced measuring field covered by short grass which is cut in weekly intervals (spring to fall) to ensure reference evaporation conditions.The field is equipped with a range of redundant devices that record weather information. In this summary we focus on a description of the devices from which data were included in the published dataset. A actual list of all devices is available at the Website of the Hydrometeorological monitoring station "Berlin-Lankwitz, FU Geo Campus" (https://www.geo.fu-berlin.de/en/geog/fachrichtungen/angeog/Messfeld-auf-dem-Campus/index.html).The dataset contains rainfall, air temperature, humidity, dew point temperature, air pressure, solar radiation as well as wind speed and direction, each measured in intervals of 15 min. It starts in January 2017 and is updated annually. Rainfall is collected with a Davis VantagePro tipping bucket which is part of the ISS (Integrated Sensor Suite, DAV-6323EU, manufactured before 2007) and mounted 2 m above ground. The collector diameter is 16.3 cm resulting in a collecting area of 210 cm². The measuring resolution of the tipping bucket is 0.25 mm (0.01 inch). During winter the DAVIS rain gauge is heated using the DAV-7720EU heating system. The begin of the heating period in each year is determined by the air temperature and starts before the daily minimum drops below 0°C. In addition a stainless steel Hellmann gauge with standard diameter of 16 cm (area: 200 m²) is installed on the monitoring field 1 m above ground. Rain water is collected in a steel can, which is emptied manually every morning from Monday to Friday using a DIN58667 measuring glass. Between December and February accumulated snow and ice is thawed. Paired data from the Hellman and DAVIS collector to assess accuracy are published separately (Reinhardt-Imjela et al. 2018). Temperature (°C), humidity (%) and air pressure (hPa) are measured 2 m above ground with the DAVIS ISS and the dew point is generated automatically from the data. Temperature includes mean, minimum and maximum of each 15 minute interval. Wind speed and direction are recorded by a Vaisale Weather Transmitter WXT520 2 m above ground. For solar radiation (W/m²) a Kipp & Zonen CMP3 Pyranometer is mounted also 2 m above ground.The data are provided as a tab-separated ASCII file with column names in the first line. The first column contains the date and time (date format: DD/MM/YYYY hh:mm). In the following columns all measured parameters are listed (units are included in the column name). Measuring errors or missing values are marked with “N/A”. Empty fields for the wind direction indicate intervals without measurable wind speed.
TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange. Climate/Runoff/Water Quality station Rollesbroich:Runoff is measured at the catchment outlet using a gauging station equipped with a combination of a V-notch weir for low flow measurements and a Parshall flume to measure normal to high flows. Runoff data of the two weir types are combined by using V-notch values for water levels below 5 cm, Parshall flume values for water levels greater than 10 cm and the weighted mean of V-notch and Parshall flume values for water levels between 5 and 10 cm, where the water levels refer to those of the V-notch weir. Meteorological data, i.e. precipitation, air temperature, air humidity, radiation components, and wind speed, were recorded at 2 m height next to the runoff gauging station As a first quality check, time series of both gauge types were compared for consistency. In addition, both runoff time series were visually inspected for inexplicable outliers (e.g. runoff peak without preceding rainfall event) and sensor failures. Unreliable data were identified by visual inspection and appropriate flags were set. The observed parameters are listed in the keywords section. File format is NetCDF 4.0.
TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange. EC/Climate station Rollesbroich 3:Geographic latitude: 50.621799 N, Geographic longitude: 6.3027962 E; Hosting Institution: Research Centre Juelich GmbH, IBG-3; Institute for Bio and Geoschiences; Agrosphere Institute (IBG-3) The observed parameters are listed in the keywords section. The file format is NetCDF 4.0.
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. Soils are dominated by (stagnic) Cambisols and Stagnosols on Devonian shales with occasional sandstone inclusions that are covered by a periglacial solifluction clay–silt layer. The mountainous grassland vegetation is dominated by perennial ryegrass (Lolium perenne) and smooth meadow grass (Poa pratensis). The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange. This data set contains weekly updated flux-, meteorological and soil measurements of the permanent operating EC/Climate station Rollesbroich 1 (50.621°N, 6.304°E,515 m a.s.l.), which was installed in spring 2011 at the border of two fields of grassland (5.8 and 7.8 ha) within the study site. Management of both fields is typical for the low mountain range of the Eifel region with one fertilizer application and three cuts per year. The area within the fetch of the eddy covariance tower is relatively flat with slopes ranging between 0.35° and 3.12°. The station is equipped with a CSAT3 sonic anemometer and LI7500 gas analyser. Besides flux measurements and typical climate parameters (radiation, air temperature, air humidity, soil moisture, soil temperature etc.) also the plant height and farming activities are recorded. Meteorological and soil data was at least controlled by visual inspection by using common plausibility ranges and cross checks with nearby stations. Afterwards the data was flagged according to it's quality (O.K., suspect, moderate, bad etc.). Flux data was processed and checked according to the TERENO QC scheme (Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, HP., Schmidt, M., Steinbrecher, R., 2012. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology 169, 122-135, 2013).
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange. Runoff is measured at the catchment outlet using a gauging station equipped with a combination of a V-notch weir for low flow measurements and a Parshall flume to measure normal to high flows. Runoff data of the two weir types are combined by using V-notch values for water levels below 5 cm, Parshall flume values for water levels greater than 10 cm and the weighted mean of V-notch and Parshall flume values for water levels between 5 and 10 cm, where the water levels refer to those of the V-notch weir. Meteorological data, i.e. precipitation, air temperature, air humidity, radiation components, and wind speed, were recorded at 2 m height next to the runoff gauging station As a first quality check, time series of both gauge types were compared for consistency. In addition, both runoff time series were visually inspected for inexplicable outliers (e.g. runoff peak without preceding rainfall event) and sensor failures. Unreliable data were identified by visual inspection and appropriate flags were set.
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange.
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level. The central monitoring site of the TERENO Eifel/Lower Rhine Valley Observatory is the catchment area of the River Rur. It covers a total area of 2354 km² and exhibits a distinct land use gradient: The lowland region in the northern part is characterised by urbanisation and intensive agriculture whereas the low mountain range in the southern part is sparsely populated and includes several drinking water reservoirs. Furthermore, the Eifel National Park is situated in the southern part of the Rur catchment serving as a reference site. Intensive test sites are placed along a transect across the Rur catchments in representative land cover, soil, and geologic settings. The Rollesbroich site is located in the low mountain range “Eifel” near the German-Belgium border and covers the area of the small Kieselbach catchment (40 ha) with altitudes ranging from 474 to 518 m.a.s.l.. The climate is temperate maritime with a mean annual air temperature and precipitation of 7.7 °C and 1033 mm, respectively, for the period from 1981 to 2001. The study site is highly instrumented. All components of the water balance (e.g. precipitation, evapotranspiration, runoff, soil water content) are continuously monitored using state-of-the-art instrumentation, including weighable lysimeters, runoff gauges, cosmic-ray soil moisture sensors, a wireless sensor network that monitors soil temperature, and soil moisture at 189 locations in different depths (5, 20 and 50 cm) throughout the study site. Periodically also different chamber measurements were made to access soil or plant gas exchange.
TERENO Eifel-Rur Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level: Climate/Soil/Deposition sampling station Schoeneseiffen; Geographic latitude: 50.5149002075195 N, Geographic longitude: 6.3755898475647 E; HostingInstitution: Research Centre Juelich GmbH, IBG-3
TERENO Northeastern German Lowland Observatory. TERENO (TERrestrial ENvironmental Observatories) spans an Earth observation network across Germany that extends from the North German lowlands to the Bavarian Alps. This unique large-scale project aims to catalogue the longterm ecological, social and economic impact of global change at regional level: Climate station Leppin; Geographic latitude: 53.893407 N, Geographic longitude: 13.165855 E; HostingInstitution: GFZ German Research Centre for Geosciences
Origin | Count |
---|---|
Wissenschaft | 29 |
Type | Count |
---|---|
unbekannt | 29 |
License | Count |
---|---|
offen | 3 |
unbekannt | 26 |
Language | Count |
---|---|
Englisch | 29 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 23 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 29 |
Lebewesen & Lebensräume | 29 |
Luft | 28 |
Mensch & Umwelt | 29 |
Wasser | 7 |
Weitere | 29 |