API src

Found 446 results.

Related terms

Umweltfreundliche Verbrennung von Steinkohle in der Wirbelschicht

Umsetzung einer klimaverträglichen Biomasseverwertung

Projektförderung Das Vorhaben “Umsetzung einer klimaverträglichen Biomasseverwertung” wird im Berliner Programm für Nachhaltige Entwicklung (BENE) gefördert aus Mitteln des Europäischen Fonds für Regionale Entwicklung und des Landes Berlin (Förderkennzeichen 1161-B5-0). Die aktuelle einfache Kompostierung von Grünabfällen aus Berlin (maßgeblich Straßenlaub der BSR und Mähgut der Grünflächenpflege) weist trotz Nutzen des Kompostes deutliche Emissionen an Treibhausgasen auf, rd. 7.600 Mg CO 2 -Äq. pro Jahr, zudem geht der Energieinhalt dieser Abfälle verloren. In dem vom Berliner Abgeordnetenhaus beschlossenen Abfallwirtschaftskonzept 2020 bis 2030 werden diese Treibhausgas-Emissionen aus der bisherigen Einfachkompostierung angesprochen und zum Fazit geführt: „Die Behandlung von Berliner Grasschnitt- und Laubabfällen in solchen Einfachkompostierungsanlagen ist daher bis Ende 2022 zu beenden.” Auch das Berliner Energie- und Klimaschutzprogramm des Landes Berlin fordert, diese Abfälle vollständig einer höherwertigen Verwertung zuzuführen. In den vorhergehenden Jahren wurden von der Senatsumweltverwaltung verschiedene technische Möglichkeiten dieser höherwertigen Verwertung untersucht. Für die höherwertige, klimaentlastende Verwertung der genannten Grünabfälle wurden die Vergärung, die direkte Verbrennung, die Aufbereitung in Hausmüll-Behandlungsanlagen und die Hydrothermale Karbonisierung (HTC) untersucht. Teils aus verfahrenstechnischen, teils aus Kostengründen konnte sich bislang keines dieser Verfahren durchsetzen. Im vorliegenden Forschungsvorhaben wurde der Weg untersucht, die Grünreste über ein mechanisches Pressverfahren zu Brennstoff aufzubereiten und diesen dann in bestehenden Kraftwerken als Kohleersatz einzusetzen. Dazu wurden in einer bereits bestehenden Aufbereitungsanlage der Firma florafuel AG für Laub und Gras in der Nähe von München große Mengen an Brennstoff produziert und für großtechnische Verbrennungsversuche in Berlin eingesetzt. In dieser Aufbereitung werden die Grünreste zunächst zerkleinert und dann gewaschen, um Inertstoffe und verbrennungsschädliches Chlor und Kalium auszutragen. Danach wird der Faserschlamm mechanisch entwässert, nachfolgend getrocknet und zu Pellets oder Briketts verpresst. Dieser Brennstoff ist in seinen physikalisch/chemischen Eigenschaften regulären Holzbrennstoffen sehr ähnlich. Die Aufbereitung selbst arbeitet nach langjähriger Betriebserfahrung weitgehend sicher. Daher soll in Berlin eine erste Demonstrationsanlage von rd. 12.000 Mg/a Durchsatz errichtet werden. Im Projekt war die sehr wichtige Frage zu klären, ob der erzeugte Brennstoff in bestehenden Berliner Kraftwerken verarbeitbar ist und dabei klimabelastende Kohle ersetzen kann. Dazu wurden in den Kohle-Kraftwerken der BTB, von Vattenfall und im Fernheizwerk Neukölln insgesamt über 150 Mg aufbereiteten Brennstoffs testweise verbrannt, in verschiedenen Feuerungsverfahren (Wanderrost und Wirbelschicht). Die Ergebnisse der Verbrennungs-Großversuche zeigen, dass sich die Grünrest-Brennstoffe zwar nicht allein, aber in Mischung mit anderen Brennstoffen in beiden Feuerungsverfahren gut verbrennen lassen. Das in den Versuchen begleitend aufgezeichnete Emissionsverhalten einer solchen Mischung erwies sich als unproblematisch. Allerdings neigt der Brennstoff bei mehrfachen Umlade- und Abwurfvorgängen zu relevanten Staubentwicklungen. Dies konnte durch die geänderte Brennstoff-Konfektionierung zwar deutlich reduziert werden, bildet aber eine noch weiter zu lösende Aufgabe. Die weitere Prüfung – eben auch über möglichst bald durchzuführende weitere Versuche – als Grundlage einer zugesagten Dauerabnahme der Bio-Brennstoffe wird durch die EVU, gerade auch im Hinblick auf zukünftige Standortkonzepte im Kontext Kohleausstieg fortgesetzt. Die Abnahme des Brennstoffs zunächst aus der Demonstrationsanlage ist die zentrale Voraussetzung für die erzielbare hohe Treibhausgas-Entlastung: Durch die Umlenkung aus der Kompostierung in diese energetische Verwertung kann eine spezifische THG-Reduzierung von rd. -460 kg CO 2 -Äq/Mg erreicht werden. Für die Gesamtmenge von rd. 102.000 Mg/a an Laub und Mähgut wäre damit eine jährliche THG-Entlastung von rd. -47.000 Mg CO 2 -Äq erzielbar. Das ist einerseits im Bereich der Abfallwirtschaft Berlins eine im Vergleich sehr hohe absolute Klima-Entlastung, andererseits liegt der spezifische Preis für die THG-Minderung im Bereich von 40 €/Mg CO 2 -Äq und damit im unteren Bereich alternativer Reduktionsmaßnahmen. Im Verlauf des Projektes ergab sich im Austausch mit dem CarboTip-Projekt (FU Berlin) eine ergänzende vorteilhafte Verwertungsmethode: Aufbereitete Mengen aus Laub und Mähgut werden zur pyrolytischen Erzeugung von Pflanzenkohle (langfristige Bindung des Kohlenstoffes im Boden) und Pyrolysegas als Erdgasersatz verwendet. Der Klimaeffekt ist ähnlich positiv wie beim Ersatz von Kohle im Kraftwerk, die CO 2 -Reduktionskosten sind ähnlich günstig.

Errichtung einer hocheffizienten Holzvergasungsanlage (Heatpipe-Reformer) und dessen Einbindung am Standort der Biomassehof Achental GmbH & Co. KG

Die agnion Operating GmbH & Co. KG wurde im Juni 2010 als Projektgesellschaft gegründet, um die mit dem Vorhaben geplante Holzvergasungsanlage zu betreiben. Am Standort des Biomassehofes Achental in Grassau (Bayern) wird eine hocheffiziente Holzvergasungsanlage mit der neuartigen Heatpipe-Reformer Technologie errichtet. Heatpipes sind hocheffiziente Wärmeübertrager mit großer Leistungsdichte. Der Heatpipe-Reformer ermöglicht es, holzartige Biomasse in ein heizwertreiches Synthesegas umzuwandeln. Dazu wird die Wärme aus der Wirbelschichtbrennkammer durch Heatpipes in den Wirbelschichtreformer gleitet. Dort erfolgt die Reaktion der Biomasse mit Wasserdampf zu Synthesegas. Das Synthesegas wird als Brennstoff in einem eigens für dieses Vorhaben entwickelten Gasmotor in Strom und Wärme umgewandelt. Die erzeugte Wärme wird in das Wärmeversorgungsnetz vor Ort, der erzeugte Strom in das nationale Netz eingespeist. Im Vergleich zu einer konventionellen Wärme- und Stromerzeugung können mit dem Vorhaben jährlich 1.500 t CO2-Emissonen und 600.000 t Heizöl eingespart werden. Die geplante Anlage zeichnet sich durch eine wesentlich höhere Effizienz der Brennstoffausnutzung im Vergleich zu herkömmlichen Anlagen zur Verbrennung holzartiger Produkte aus. Einsatzmöglichkeiten eröffnen sich nicht nur bei der Errichtung neuer, vor allem dezentraler Anlagen in Städten und Gemeinden, sondern auch beim Ersatz bestehender Anlagen.

Entwicklung eines Verfahrens zur Vergasung von Biomasse nach dem Prinzip der zirkulierenden Wirbelschicht

Klassifizierung und physikalisch-chemische Charakterisierung der Einsatzstoffe (Ermittlung von Grunddaten). Durchfuehrung von Foerderversuchen mit verschiedenen Einsatzstoffen. Vergasungsversuche in einer zirkulierenden Wirbelschicht. Dabei Variation der Einsatzstoffe, der Feuchte derselben und der Reaktionstemperatur. Durchfuehrung von Langzeitversuchen zur Demonstration der Verfuegbarkeit des Verfahrens bei optimalen Betriebsbedingungen. Entwurf eines Verfahrensschemas zur Produktion von niederkalorigem Heizgas auf der Basis der Versuchsergebnisse.

Ermittlung noch vorhandener Klimaschutzpotentiale bei der thermischen Klärschlammbehandlung unter besonderer Berücksichtigung der Abgasparameter Stickoxide (NOx) und Lachgas (N2O)

Die thermische Behandlung des stickstoffreichen Abfallstoffs Klärschlamm erfolgt überwiegend in stationären Wirbelschichten. Die Betriebsführung dieser Anlagen fokussiert auf eine weitgehende Minderung der Stickoxidemissionen und berücksichtigt bisher nur teilweise die Minderung des klimarelevanten Abgasparameters Lachgas (N2O). Die Treibhausgaswirkung von N2O ist um den Faktor 300 höher im Vergleich zu CO2 und kann bei hohen Emissionen die Klimabilanz der Klärschlammverbrennung deutlich verschlechtern. Infolge der Umsetzung der Vorgaben der AbfKlärV wird zu den bestehenden Anlagen ein massiver Zubau an neuen Monoverbrennungsanlagen ( 30) erwartet, welcher bis 2029 weitgehend abgeschlossen sein soll. In diesem Zusammenhang bietet sich durch Anwendung geeigneter Feuerungs- und Abgasreinigungskonzepte die Möglichkeit, die Klimawirkung der thermischen Klärschlammbehandlung insgesamt zu mindern. Im Rahmen des Vorhabens sollen Emissionsdaten von NOx/N2O unter Berücksichtigung der angewandten Feuerungs- und Abgasreinigungskonzepte ermittelt und ausgewertet werden. Basierend hierauf werden Einsatzbereiche und Minderungseffizienzen primärer und sekundärer Schadgasminderungsmaßnahmen identifiziert und praktische Handlungsempfehlungen zur Minderung der NOx/N2O-Emissionen abgeleitet.

Prozessoptimierung an Klärschlammfeuerungen zur Rohstoffrückgewinnung und Emissionsreduktion, Teilvorhaben: Agglomerationsüberwachung und -vermeidung

Ziel des hier beantragten Projekts ist es, Maßnahmen zu erforschen, um Lachgasemissionen stationärer Wirbelschichten zur thermischen Klärschlammverwertung zu reduzieren und gleichzeitig die Aschequalität mit dem Ziel der Phosphorrückgewinnung zu optimieren. Eine Erhöhung der Wirbelschichttemperatur ist dafür unerlässlich. Um dies zu realisieren, soll zunächst ein online Agglomerationswächter erforscht und erprobt werden, um den Fluidisierungszustand zuverlässig zu überwachen und dadurch höhere Temperaturen in der Wirbelschicht realisieren zu können. Anschließende Versuche an zwei Laboranlagen dienen erstens als Proof of Concept des Agglomerationswächters und zeigen zweitens den Einfluss von Temperaturerhöhungen und Additiveinsatz auf Lachgasemissionen und Aschequalität auf. Final werden die in der Laboranlage ermittelten optimalen Betriebsparameter und Additive sowie der Agglomerationswächter in drei Industrieanlagen erprobt. Der hier vorgeschlagene technologische Ansatz zeichnet sich durch einen sehr hohen möglichen Impact durch die aktuelle und künftig noch steigende Bedeutung der Mono-Klärschlammverbrennung in Wirbelschichten sowie den strenger werdenden regulatorischen Anforderungen hinsichtlich Aschequalität und Emissionen aus. Zusätzlich stellt er ein einfach, kostengünstig und modular nachrüstbares Tool dar, welches bereits kurzfristig am Markt verfügbar sein kann.

Prozessoptimierung an Klärschlammfeuerungen zur Rohstoffrückgewinnung und Emissionsreduktion

Ziel des hier beantragten Projekts ist es, Maßnahmen zu erforschen, um Lachgasemissionen stationärer Wirbelschichten zur thermischen Klärschlammverwertung zu reduzieren und gleichzeitig die Aschequalität mit dem Ziel der Phosphorrückgewinnung zu optimieren. Eine Erhöhung der Wirbelschichttemperatur ist dafür unerlässlich. Um dies zu realisieren, soll zunächst ein online Agglomerationswächter erforscht und erprobt werden, um den Fluidisierungszustand zuverlässig zu überwachen und dadurch höhere Temperaturen in der Wirbelschicht realisieren zu können. Anschließende Versuche an zwei Laboranlagen dienen erstens als Proof of Concept des Agglomerationswächters und zeigen zweitens den Einfluss von Temperaturerhöhungen und Additiveinsatz auf Lachgasemissionen und Aschequalität auf. Final werden die in der Laboranlage ermittelten optimalen Betriebsparameter und Additive sowie der Agglomerationswächter in drei Industrieanlagen erprobt. Der hier vorgeschlagene technologische Ansatz zeichnet sich durch einen sehr hohen möglichen Impact durch die aktuelle und künftig noch steigende Bedeutung der Mono-Klärschlammverbrennung in Wirbelschichten sowie den strenger werdenden regulatorischen Anforderungen hinsichtlich Aschequalität und Emissionen aus. Zusätzlich stellt er ein einfach, kostengünstig und modular nachrüstbares Tool dar, welches bereits kurzfristig am Markt verfügbar sein kann.

Prozessoptimierung an Klärschlammfeuerungen zur Rohstoffrückgewinnung und Emissionsreduktion, Teilvorhaben: Prozessoptimierung zur Lachgasminderung und Verbesserung der Aschequalität

Ziel des hier beantragten Projekts ist es, Maßnahmen zu erforschen, um Lachgasemissionen stationärer Wirbelschichten zur thermischen Klärschlammverwertung zu reduzieren und gleichzeitig die Aschequalität mit dem Ziel der Phosphorrückgewinnung zu optimieren. Eine Erhöhung der Wirbelschichttemperatur ist dafür unerlässlich. Um dies zu realisieren, soll zunächst ein online Agglomerationswächter erforscht und erprobt werden, um den Fluidisierungszustand zuverlässig zu überwachen und dadurch höhere Temperaturen in der Wirbelschicht realisieren zu können. Anschließende Versuche an zwei Laboranlagen dienen erstens als Proof of Concept des Agglomerationswächters und zeigen zweitens den Einfluss von Temperaturerhöhungen und Additiveinsatz auf Lachgasemissionen und Aschequalität auf. Final werden die in der Laboranlage ermittelten optimalen Betriebsparameter und Additive sowie der Agglomerationswächter in drei Industrieanlagen erprobt. Der hier vorgeschlagene technologische Ansatz zeichnet sich durch einen sehr hohen möglichen Impact durch die aktuelle und künftig noch steigende Bedeutung der Mono-Klärschlammverbrennung in Wirbelschichten sowie den strenger werdenden regulatorischen Anforderungen hinsichtlich Aschequalität und Emissionen aus. Zusätzlich stellt er ein einfach, kostengünstig und modular nachrüstbares Tool dar, welches bereits kurzfristig am Markt verfügbar sein kann.

Entwicklung einer Wirbelschichtfeuerung

Zielsetzung fuer eine Wirbelschichtfeuerungsentwicklung am Institut fuer Energie- und Kraftwerkstechnik sind: 1. Brennstoffleistungen bis 1000 MW 2. Moeglicher Druckbetrieb 3. Eignung auch fuer problematische Brennstoffe 4. Zylindrische Bauweise, auch der Eintauchflaechen 5. Moeglichst gute Durchmischung 6. Kostenguenstige Bauweise in Modulen.

HyFRed im HC-H2: Wasserstoffbasierte Feinerzreduktionsroute zur Stahlherstellung, Teilvorhaben B_SMS group GmbH

1 2 3 4 543 44 45