Bisher wird die Sicherheit von Batteriegehäusesystemen gegenüber thermischem Durchgehen und Propagation im Wesentlichen durch zeit- und kostenintensive, iterative Experimente während der Produktentwicklungsphase überprüft. Nach aktuellem Stand der Technik werden überwiegend metallische Werkstoffe für Batteriegehäuse verwendet. Konzepte für leichtere und nachhaltigere Batteriegehäuse aus Kunststoffen stehen zwar zur Verfügung, der Nachweis der Sicherheit ist allerdings sehr aufwendig und teuer. Von einer stärkeren Integration von Simulationsmethoden wird eine deutliche Verbesserung des Entwicklungsprozesses erwartet. Ziel ist zukünftig die Sicherheit von kunststoffbasierten Batteriegehäusen bei geringeren Kosten und Entwicklungszeiten zu gewährleisten. Es käme dabei sowohl bei der Herstellung der Gehäuse als auch im Betrieb von Elektrofahrzeugen zu einer CO2-Einsparung. Das Projekt SiKuBa setzt bei der Entwicklung und Validierung von Simulationsmodellen zur Auslegung sicherer Kunststoff-Batteriegehäuse unter thermischem Durchgehen an. Die Entstehung und Ausbreitung der gefährlichen Gas- und Partikelströme sowie deren Interaktion mit Strukturelementen wird experimentell analysiert und in strömungs- und strukturmechanische Simulationsmodelle überführt. Die Modelle eröffnen eine effiziente Möglichkeit neuartige Konzepte zur Verlangsamung und Unterdrückung der Propagation virtuell zu untersuchen. Der somit mögliche Einsatz sicherer und nachhaltiger kunststoffbasierter Gehäuselösungen kann dabei einen wesentlichen Beitrag zur Akzeptanz der Elektromobilität leisten. Kautex fokussiert sich hauptsächlich auf die Entwicklung von Schutzkonzepten für den Lastfall des thermischen Durchgehens. Neben der Weiterentwicklung lokaler Schutzmaßnahmen werden neuartige Konzepte zur schnellen Abführung heißer Gase erarbeitet. Darüber hinaus ist Kautex für die Auslegung und Fertigung von Demonstratoren verantwortlich und wird die Simulationsarbeiten im Projekt unterstützen.
Verschiedene Moosspezies aus dem mitteldeutschen Raum werden gesammelt und auf die Produktion pharmazeutisch einsetzbarer Inhaltsstoffe gescreent.
Ziel ist die werkstoffliche oder rohstoffliche Verwertung von Kunststoff enthaltenden Verbundmaterialien (Kunststoff-Metall, Kunststoff-Papier, Kunststoff-Kunststoff) sowie von Kunststoffgemischen. Fuer die werkstoffliche Wiederverwertung muessen hierzu die einzelnen Komponenten voneinander separiert und sodann sortenrein zu neuen Werkstoffen verarbeitet werden. Wird die Separierung der Verbunde oder Gemische zu aufwendig, werden diese in eine Form mit vorgegebener Spezifikation gebracht, die den Einsatz in der rohstofflichen Wiederverwertung erlaubt (Hochofen, Pyrolyse etc.). Ergebnisse: Verbundmaterialien werden a) werkstofflich verwertet, indem die Verbundkomponenten voneinander abgeloest und anschliessend voneinander getrennt werden. Die Abloesung wird entweder durch Aufloesen einer Verbundkornponente oder durch Anloesen des die Schichten verbindenden Klebers erreicht. Waessrige Abloesemittel garantieren oekologische und oekonomische Verfahren. Beispiele sind Getraenkeverbundverpackungen und Arzneimittelblister sowie beflockte Materialien. b) Verbundmaterialien werden rohstofflich verwertet, indem die Kunststoffverbundmaterialien durch Verfahrenstechniken wie Agglomeratoren und Pelletpressen in eine fuer den Einsatz im Hochofen oder in der Pyrolyse geeignete Granulatform gebracht werden. Einzuhaltende Spezifikationen wie Metallanteile, Chlorgehalte etc. werden durch vorgeschaltete physikalische Abscheidevorrichtungen erreicht und in einer Qualitaetskontrolle gesichert. Aufbereitete Materialien sind die Mischfraktion aus dem DSD-Muell, Teppichboedenabfaelle und Kunststoffe aus dem Elektronikschrott Die Trennung von Kunststoffgemischen wird mit einem Freifallscheider auf elektrostatischer Basis optimiert und Sortenreinheiten oberhalb 99 Prozent erzielt. Beispiele sind PET und PVC-Getraenkeflaschen.
Nur wenige Umweltthemen bewegen die Oeffentlichkeit so sehr wie das Abfallproblem. Greifbarstes Objekt ist hier die Verpackung. Gesetzgeberische Vorgaben und ein geaendertes Kaeuferverhalten fuehren zur Forderung nach der Verpackungsverminderung. Durch Materialminderungen, Materialeinsparungen bis hin zu neuen Materialkombinationen wird im Verpackungsbereich heute staendig an der Optimierung von Verpackungen gearbeitet. Die Herstellung leichter und trotzdem formstabiler Verpackungen aus woelbstrukturierten Materialien, wie Blech, Pappe, Papier und Kunststoff bietet hier einen Ansatz, den Verbrauch an Packmittelmengen erheblich zu reduzieren. Die Technik des Woelbstrukturierens erfordert keine aufwendigen Werkzeuge und nur geringen Energieaufwand. Ferner wird die Oberflaechenguete des Materials durch diese neuartige Technik nicht beeintraechtigt, so dass veredelte Ausgangswerkstoffe mit lackierten, bedruckten oder korrosionsgeschuetzten Oberflaechen verwendet werden koennen. Mit Hilfe der vorliegenden experimentellen Daten sowie FEM-Analysen am Rechner ergeben sich kostenguenstige Optimierungsmoeglichkeiten fuer neue Anwendungsgebiete materialeinsparender Verpackungen.
Arzneistoffträger auf Basis von Kollagen bieten aufgrund der Interaktionen mit Zellen und des positiven Einflusses auf die Geweberegeneration Vorteile gegenüber synthetischen Polymersystemen. Das Verständnis um Möglichkeiten zur Steuerung der Wirkstofffreigabe ist noch begrenzt. Zwei Prozesse, welche durch Modifikation des Trägermaterials wie z.B. Vernetzung gesteuert werden können, spielen eine entscheidende Rolle: Die Quellung des hydrophilen Polymers und dessen enzymatischer Abbau. Im Forschungsvorhaben sollen diese auf mikrostruktureller Ebene charakterisiert, mathematisch beschrieben und zur numerischen Simulation in zwei Raumdimensionen erforderliche Parameter bestimmt werden. Bei der Modellierung werden auf mikroskopischer Ebene Erhaltungsgesetze formuliert. Durch einen Mittelungsprozess unter Einbeziehung heuristischer Ansätze wird ein Übergang auf die Makroskala vollzogen. Der Degradationsprozess wird anschließend mit dem bereits in eigenen Vorarbeiten untersuchten Quellungsvorhang gekoppelt. Parallel werden die experimentellen Untersuchungen zur Wirkstofffreigabe durchgeführt. Die abschließende mehrdimensionale Simulation soll eine gezielte Einstellung der Matrixeigenschaften und -form zur Optimierung einer lokalen Arzneistofftherapie ermöglichen.
1
2
3
4
5
…
643
644
645