Der Erfolg der Energiewende in den Bereichen Wärme, Verkehr und lokale Stromerzeugung entscheidet sich auf lokaler, kleinräumiger Ebene. Damit verbunden sind große und langfristige Ausgabenentscheidungen (Gebäudesanierung, Wahl des Heizsystems, Antrieb des Fahrzeugs, Ladeinfrastruktur, eigene Stromerzeugung), die wesentlich von der Kommune und den lokal bestehenden Versorgungsstrukturen, aber auch von den individuellen Entscheidungen der privaten Haushalte bestimmt sind. Ziel des Projektes ist die Entwicklung eines Dashboards für kommunale Entscheidungsträger zur Abschätzung der sozialen und wirtschaftlichen Auswirkungen von Maßnahmen zur Energiewende und dem aus der damit verbundenen Transformation resultierenden Strukturwandel. Dabei sollen zum einen ein Monitoring des Fortschritts der Energiewende auf kommunaler Ebene und zum anderen die Identifikation von möglichen zukünftigen Chancen und Herausforderungen bei der Betrachtung kommunaler Energiewendeszenarien im Kontext nationaler wie globaler Entwicklungspfade ermöglicht werden. Im Teilvorhaben der GWS 'Entwicklung eines Dashboards zur modellgestützten Analyse kommunaler Energiewendeszenarien' wird ein um Energie- und Umweltaspekte erweitertes makroökonometrisches Input-Output Modell entwickelt und mit einem vom PIK entwickelten Mikrosimulationsmodell der Haushalte kombiniert. Die räumliche Auflösung der Modelle umfasst alle deutschen Kreise und Gemeinden. Auf diese Weise werden kommunale Energiewendeszenarien unter Einbeziehung von demographischem Wandel und wirtschaftlichem Strukturwandel analysiert und kommunalen Akteur:innen Erkenntnisse für die eigene Umsetzung der Energiewende geliefert. Ergebnisse werden Nutzern in Form eines Dashboards präsentiert. Die Entwicklung der Indikatoren und Szenarien sowie des Dashboards erfolgt in enger Abstimmung mit 6 Modellkommunen sowie Vertretern des deutschen Städtetags, des Landkreistags, sowie des Landesamtes für Umwelt und Verbraucherschutz NRW.
Der Erfolg der Energiewende in den Bereichen Wärme, Verkehr und lokale Stromerzeugung entscheidet sich auf lokaler, kleinräumiger Ebene. Damit verbunden sind große und langfristige Ausgabenentscheidungen (Gebäudesanierung, Wahl des Heizsystems, Antrieb des Fahrzeugs, Ladeinfrastruktur, eigene Stromerzeugung), die wesentlich von der Kommune und den lokal bestehenden Versorgungsstrukturen, aber auch von den individuellen Entscheidungen der privaten Haushalte bestimmt sind. Ziel des Projektes ist die Entwicklung eines Dashboards für kommunale Entscheidungsträger zur Abschätzung der sozialen und wirtschaftlichen Auswirkungen von Maßnahmen zur Energiewende und dem aus der damit verbundenen Transformation resultierenden Strukturwandel. Dabei sollen zum einen ein Monitoring des Fortschritts der Energiewende auf kommunaler Ebene und zum anderen die Identifikation von möglichen zukünftigen Chancen und Herausforderungen bei der Betrachtung kommunaler Energiewendeszenarien im Kontext nationaler wie globaler Entwicklungspfade ermöglicht werden. Im Teilvorhaben der GWS 'Entwicklung eines Dashboards zur modellgestützten Analyse kommunaler Energiewendeszenarien' wird ein um Energie- und Umweltaspekte erweitertes makroökonometrisches Input-Output Modell entwickelt und mit einem vom PIK entwickelten Mikrosimulationsmodell der Haushalte kombiniert. Die räumliche Auflösung der Modelle umfasst alle deutschen Kreise und Gemeinden. Auf diese Weise werden kommunale Energiewendeszenarien unter Einbeziehung von demographischem Wandel und wirtschaftlichem Strukturwandel analysiert und kommunalen Akteur:innen Erkenntnisse für die eigene Umsetzung der Energiewende geliefert. Ergebnisse werden Nutzern in Form eines Dashboards präsentiert. Die Entwicklung der Indikatoren und Szenarien sowie des Dashboards erfolgt in enger Abstimmung mit 6 Modellkommunen sowie Vertretern des deutschen Städtetags, des Landkreistags, sowie des Landesamtes für Umwelt und Verbraucherschutz NRW.
Mit der regionalen Strukturpolitik zielt der Staat darauf ab, die Wohlfahrt von Regionen zu stärken und die Gleichwertigkeit der Lebensverhältnisse sicherzustellen. Die Nachhaltigkeitstransformation stellt dieses Politikfeld vor neue Herausforderungen. Es gilt, die Förderprogramme und -leitlinien der regionalen Strukturpolitik so weiterzuentwickeln, dass sie die sozial-ökologische Transformation unterstützen und beschleunigen. In diesem Zusammenhang sind Ziele, Kriterien und Indikatoren für eine transformatorische Regionalförderung zu entwickeln und konkrete Vorschläge zur Weiterentwicklung der Förderrichtlinien zu erarbeiten. Zu analysieren ist dabei auch, wie umweltschädliche Förderungen vermieden werden können (do no significant harm Ansatz). Forschungsbedarf besteht auch hinsichtlich der Gestaltung einer präventiven regionalen Strukturpolitik, d.h. einer Strukturpolitik, die nicht lediglich auf aktuelle Strukturschwäche zielt, sondern künftige, aufgrund der nachhaltigkeitsorientierten Wirtschaftstransformation zu erwartende Strukturschwächen/Förderbedarfe in den Blick nimmt. Da im Gesamtdeutschen Fördersystem zahlreiche Programme die regionale Strukturförderung adressieren, soll außerdem geprüft werden, inwieweit Redundanzen, Komplementaritäten und Widersprüche zwischen den bestehenden Förderprogrammen bestehen und wie diese beseitigt werden können. Dadurch könnten im Rahmen einer harmonisierten und abgestimmten Förderkulisse die Ziele einer neu ausgerichteten regionalen Strukturpolitik effektiver und effizienter erreicht werden.
Der Kartendienst (WMS-Gruppe) stellt die Geodaten aus dem Landschaftsprogramm Saarland die Themenkarte Kulturlandschaft,Erholungsvorsorge,Freiraumentwicklung dar.:Mit dem wirtschaftlichen Strukturwandel bietet sich die Möglichkeit, die Bergbaufolgelandschaften des Saarlandes großräumig aufzuwerten. Damit soll eine Verbesserung des Naturhaushaltes und der siedlungsnahen Erholungsfunktion im Ballungsraum sowie eine Inwertsetzung des kulturellen Erbes erreicht werden. Im Landschaftsprogramm wird großräumlich der diesbezügliche Flächenumgriff dargestellt. s. Landschaftsprogramm Saarland, Kapitel 8.7.2
Sustainability models should consider aspects of the economy-environment-population nexus, be dynamic, and acknowledge the disparity among actors/countries. Lastly, sustainability models should not be programmed either to reject sustainability (e.g., an essential, non-renewable input) or to affirm it (e.g., costless, endogenous technical change). We develop a simulation model to assess sustainable development on three levels: economic (by determining production, consumption, investment, direct foreign investment, technology transfer, and international trade), social (by calculating population change, migration flows, and welfare), and environmental (by calculating the difference between environmental pollution and upgrading expenditures). The model follows 'representative' countries that differ in their initial endowments (i.e., natural resource endowment, physical and human capital, technology, and population), and thus in their development levels and prospects. In addition, we model free substitution in production, flexible economic structures, the ability to upgrade input factors via investment, and optimizing agents who possess a high degree of mobility and information, and who interact through and in response to market equilibria.
Unternehmensgründungen leisten in hochentwickelten Industrieländern einen Beitrag zum wirtschaftlichen Strukturwandel, befördern Innovationen und bewirken Beschäftigungseffekte. Untersucht werden Spin-offs aus Inkubatorunternehmen, die in einer ersten Phase der Ausgründung ein enges Interaktionsverhältnis zum Mutterunternehmen aufweisen und sich hierin von originären Neugründungen unterscheiden. Solche Interaktionen beinhalten Unterstützungsleistungen z.B. in der Form von Pilot- und Folgeaufträgen, corporate venture-capital, Patenten, Lizenzen, oder das Bereitstellen von Infrastruktur bzw. Arbeitskräften. Dieser Entstehungstyp birgt für das neu gegründete Unternehmen selbst, aber auch bezüglich der weiteren wirtschaftsstrukturellen Implikationen besondere Chancen und Risiken. Erstens entwickeln sich diese Firmen in einem Schonraum, was ihnen besondere Überlebenschancen eröffnet. Zweitens bestehen jedoch besondere Anforderungen bei der Abgrenzung vom Ursprungskontext, um ein eigenständiges Profil und eine entsprechende Wettbewerbsposition zu begründen. Drittens setzen diese Firmen aufgrund der Nähe zum Entstehungskontext etablierte Wirtschaftszweige auf modifizierte Art fort: Sie platzieren neue Dienstleistungs- und technische Produkte am Markt und unterstützen damit den langfristigen Strukturwandel. Für die Durchführung ist ein qualitatives Vorgehen geplant. Wir untersuchen in der Region Baden-Württemberg, welche Strategien die Gründungsunternehmen verfolgen und wie diese Strategien in die allgemeinen betrieblichen Planungen der Geschäftsentwicklung eingestellt sind. Mit der Betrachtung der betrieblichen Strategiebildung und der damit verbundenen unternehmensbezogenen Fokussierung lassen sich zugleich die personen- und die umfeldbezogenen Einflussfaktoren thematisieren. Es ist - so unsere Grundannahme - letztlich die betriebliche Ebene, auf der personen- und umfeldbezogene Faktoren ihre Wirkungen entfalten, und von der aus die aggregierten regionalökonomischen und wirtschaftsstrukturellen Effekte ihren Ausgangspunkt nehmen.
Discussions of the causes and effects of global climate change invariably invoke the interaction between the physical environment and human activities. The increase of greenhouse gases in the earth's atmosphere is widely identified as central to the projected warming trends of the next several generations. These temperature changes will also affect precipitation and sea levels and thus determine amounts and types of land available for cultivation and the kinds of crops appropriate to grow on them, thus influencing population size and density as well as various economic and political arrangements. Human activities in turn contribute significantly to the amount of greenhouse gases emitted so that changes in populations and their ways of life will alter climate trends. There are numerous and complex feedback relations between climate and human behavior. Although these are always acknowledged, their effects are poorly understood. However, until the linkages between the physical and human domains are identified and explicitly introduced into our models, it will be difficult to understand the direction and consequences of change or to make viable policy recommendations. In order to study the impact of climate on human systems and of human behavior on physical systems, we have developed a model called CLIMSOC that focuses on climate-society interactions. The structure is a general and theoretical one that permits empirical studies of specific geographical regions or key linkages at the global scale. A set of basic variables and key social, economic, and political relationships underlie the model's structure.
<p>Der Primärenergieverbrauch ist seit Beginn der 1990er Jahre rückläufig. Bis auf Erdgas ist der Einsatz aller konventionellen Primärenergieträger seither zurückgegangen. Dagegen hat die Nutzung erneuerbarer Energien zugenommen. Ihr Anteil ist kontinuierlich angestiegen, besonders seit dem Jahr 2000.</p><p>Definition und Einflussfaktoren</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> (PEV) bezeichnet den Energiegehalt aller im Inland eingesetzten Energieträger. Der Begriff umfasst sogenannte Primärenergieträger, wie zum Beispiel Braun- und Steinkohle, Mineralöl oder Erdgas, die entweder direkt genutzt oder in sogenannte Sekundärenergieträger, wie zum Beispiel Kohlebriketts, Benzin und Diesel, Strom oder Fernwärme, umgewandelt werden. Berechnet wird er als Summe aller im Inland gewonnenen Energieträger zuzüglich des Saldos der importierten und exportierten Mengen sowie der Lagerbestandsveränderungen abzüglich der auf Hochsee gebunkerten Vorräte.</p><p>Statistisch wird der Primärenergieverbrauch über das Wirkungsgradprinzip ermittelt. Dabei werden die Einsatzmengen der in Feuerungsanlagen verbrannten Energieträger mit ihrem Heizwert multipliziert. Für Strom aus Wind, Wasserkraft oder Photovoltaik wird dabei ein Wirkungsgrad von 100 %, für die Geothermie von 10 % und für die Kernenergie von 33 % angenommen. Im Ergebnis wird durch diese internationale Festlegung für die erneuerbaren Energien ein erheblich niedrigerer PEV errechnet als für fossil-nukleare Brennstoffe. Dies hat in Zeiten der Energiewende methodenbedingte Verzerrungen bei der Trendbetrachtung zur Folge: Der Primärenergieverbrauch sinkt bei fortschreitender Substitution von fossil-nuklearen Brennstoffen durch erneuerbare Energien, selbst wenn die gleiche Menge an Strom zur Nutzung bereitgestellt wird. Dieser rein statistische Effekt überzeichnet den tatsächlichen Verbrauchsrückgang, wie die Entwicklung des <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-erneuerbare-energien">Bruttoendenergieverbrauchs</a> zeigt, welcher von diesem statistischen Effekt unbeeinflusst ist.</p><p>Der Anteil erneuerbarer Energien am gesamten Primärenergieverbrauch steigt aufgrund des Wirkungsgradprinzips dagegen unterproportional (siehe Abb. „Primärenergieverbrauch“). Es wird –bedingt durch oben beschriebene Festlegungen – ein langsamerer Anstieg des Erneuerbaren-Anteils am PEV verzeichnet. Dies kann einen geringeren Ausbaueffekt suggerieren. Diese Effekte werden umso größer, je mehr Stromproduktion aus beispielsweise Kohlekraftwerken durch erneuerbare Energien und/oder Stromimporte (ebenfalls mit Wirkungsgrad von 100 % bewertet) ersetzt werden, weil immer weniger Umwandlungsverluste in die Primärenergiebilanzierung einfließen.</p><p>Der Primärenergieverbrauch wird in erheblichem Maße durch die wirtschaftliche Konjunktur und Struktur, Energieträgerpreise und technische Entwicklungen beeinflusst. Auch die Witterungsverhältnisse und damit verbunden der Bedarf an Raumwärme spielen eine wichtige Rolle.</p><p>Entwicklung und Ziele</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in Deutschland ist seit Beginn der 1990er Jahre rückläufig (siehe Abb. „Primärenergieverbrauch“). Das ergibt sich zum einen aus methodischen Gründen beim Umstieg auf erneuerbare Energien (siehe Abschnitt „Primärenergieverbrauch erklärt“). Zum anderen konnten aber auch ein wirtschaftlicher Strukturwandel sowie Effizienzsteigerungen beobachtet werden – letztere zum Beispiel durch bessere Ausnutzung der in Energieträgern gespeicherten Energie (Brennstoffnutzungsgrad) in <a href="https://www.umweltbundesamt.de/daten/energie/kraftwerke-konventionelle-erneuerbare">Kraftwerken</a>, Motoren oder Heizkesseln.</p><p>Im 2023 in Kraft getretenen Energieeffizienzgesetz (EnEfG) hat der Gesetzgeber festgelegt, dass der Primärenergieverbrauch bis zum Jahr 2030 um 39,3 % unter dem Wert des Jahres 2008 liegen soll. In den „<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-projektionen/treibhausgas-projektionen/aktuelle-treibhausgas-projektionen">Treibhausgas-Projektionen 2025</a>“ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Wichtig ist dabei auch die Frage nach der zu erwartenden Entwicklung des Primärenergieverbrauchs. Das Ergebnis der Untersuchung: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem PEV von etwa 9.800 Petajoule (PJ) zu rechnen (Mit-Maßnahmen-<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Szenario#alphabar">Szenario</a>). Das wäre gegenüber dem Jahr 2008 ein Rückgang von lediglich etwa 32 %. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen.</p><p>Primärenergieverbrauch nach Energieträgern</p><p>Seit 1990 hat sich der Energieträgermix stark verändert. Der Verbrauch von <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> auf Basis von Braunkohle lag im Jahr 2024 um 75 %, der von Steinkohle um etwa 67 % unter dem des Jahres 1990. Der Energieverbrauch auf Basis von Erdgas stieg an: Noch im Jahr 2021 lag das Plus gegenüber dem Jahr 1990 bei 44 %. In der Folge des Krieges in der Ukraine und den daraus erwachsenden Versorgungsengpässen und der wirtschaftlichen Rezession sank der Gasverbrauch in den Jahren 2022 und 2023 gegenüber dem Jahr 2021 jedoch deutlich. Im Jahr 2024 war erneut ein Anstieg zu verzeichnen: Der Energieverbrauch für Erdgas lag 19 % über dem des Jahres 1990. Der Einsatz erneuerbarer Energieträger hat sich seit 1990 mehr als verzehnfacht (siehe Abb. „Primärenergieverbrauch nach Energieträgern“).</p>
Nature can be mobilised to protect itself, with nature-based solutions (NbS) being employed to transform environmental problems into opportunities. Ecosystem restoration using NbS is important; for instance, freshwaters play a big role in the restoration of streams, rivers, peatlands and wetlands. In this context, the EU-funded MERLIN project will demonstrate best practices for freshwater restoration. Bringing together 44 partners from across Europe, including universities, research institutes and nature conservation organisations, as well as stakeholders for businesses, governments and municipalities, the project will draw on successful freshwater restoration projects across Europe transforming them into beacons of innovation. Through collaborations with local communities and key economies, MERLIN will co-develop win–win solutions spearheading systemic economic, social and environmental change. Objective: Europe's environment is in an alarming state, with climate change effects aggravating. To secure economic prosperity, human wellbeing and social peace, systemic transformative change of our society is imperative. Ecosystem restoration using nature-based solutions (NbS) is key to this change, in which freshwaters hold a pivotal role. MERLIN will demonstrate freshwater restoration best-practice; implement innovative NbS at landscape-scale; upscale systemic restoration seizing green growth and private investment opportunities; mainstream restoration by co-development with local communities and economic sectors; multiply solutions for transformative restoration to key players of systemic change. MERLIN will capitalise on successful freshwater restoration projects across Europe. Success factors of 17 flagship projects will be scrutinized, generating a blueprint for proficient NbS implementation. With investments of 10 mio Euro in hands-on upscaling measures along scalability plans, MERLIN will transform these projects into beacons of innovation for systemic change. Upscaling to the European level, MERLIN will identify landscapes with high potential for transformative restoration and will analyse cost-benefits of restoration scenarios. Economic analyses of European regions will seize green growth opportunities arising from restoration. MERLIN will delineate models for private investment into restoration alongside public funding. MERLIN's initiatives will co-design win-win solutions with economic sectors (agriculture, water supply, insurance, navigation) and local communities, spearheading systemic economic, social and environmental change. The MERLIN Academy and virtual marketplace will multiply innovations to the community of practice, investors and policy makers across Europe and beyond. MERLIN is committed to a sustainable, climate-neutral and -resilient, inclusive and transformative path, mainstreaming restoration as a cornerstone for systemic change.
| Origin | Count |
|---|---|
| Bund | 98 |
| Land | 11 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Förderprogramm | 89 |
| Repositorium | 1 |
| Text | 8 |
| unbekannt | 12 |
| License | Count |
|---|---|
| geschlossen | 12 |
| offen | 96 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 64 |
| Englisch | 59 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Dokument | 4 |
| Keine | 72 |
| Webdienst | 4 |
| Webseite | 33 |
| Topic | Count |
|---|---|
| Boden | 77 |
| Lebewesen und Lebensräume | 83 |
| Luft | 59 |
| Mensch und Umwelt | 110 |
| Wasser | 47 |
| Weitere | 110 |