API src

Found 1001 results.

Related terms

Mindarus abietinus, Abhaengigkeit der Massenvermehrung von der Witterung

Die Tannentrieblaus Mindarus abietinus tritt in den Hochlagen der Mittelgebirge soweit die Weisstanne vorkommt intermitierend mit Massenvermehrungen auf. Die bisherigen Beschreibungen der Literatur ueber die Biologie dieser Laus stimmen nicht. Diese Biologie steht aber weniger im Vordergrund des Interesses als vielmehr der Massenwechsel. Dieser scheint ziemlich eindeutig mit den Formen des Winters zusammenzuhaengen. Bei fruehen Wintern mit frueher Schneelage, die bis in das Fruehjahr hineinanhaelt, gibt es Massenvermehrungen. Halten solche Jahre an bilden die Weisstannen nur ganz kurze Triebe aus. Sie scheinen im Wuchs zu stocken.

Biomasse - Boden - Sorten - Gene - Pappeln und Weiden im Kurzumtrieb

Im zweiten Projektjahr wurden die Versuchsflächen ergänzt. Eine im ersten Jahr missglückte Anpflanzung (Pappel) wurde wiederholt, und eine neue Versuchsfläche im Bereich Oststeiermark-Südburgenland wurde im Raum Hartberg gefunden und angelegt. Weiters wurden Demonstrationsflächen mit den bisher besten Pappel- und Weidenklonen im Raum Haag (Mostviertel, NÖ) angelegt. Diese Flächen sind alle wunschgemäß angewachsen. Ein Aussaatversuch mit Robinie schlug jedoch wegen der heißen Witterung im Frühjahr 2012 fehl. Die Pappelflächen wurden auf Rostbefall bonitiert; die Selektionen des BFW aus nordamerikanischen Schwarzpappeln zeigen sich als sehr vielversprechend. Bei den Weiden wurde die Tullner Versuchsfläche zurückgeschnitten, und die Aufwüchse des ersten Jahres wurden vermessen und gewogen. Es wurden Biomasse-Erträge bis zu 13 Tonnen pro Hektar und Jahr ermittelt. Im Labor wurde die Amplifikation von Genen aus Pappeln und Weiden fortgesetzt und um Versuche mit extrahierter RNA ergänzt.

Erneuerbare Stromerzeugung mit verhaltenem Wachstum

<p>Vermehrte Nutzung erneuerbarer Energien im Wärme- und Verkehrssektor </p><p>Die deutsche Bruttostromerzeugung aus erneuerbaren Energien wird 2025 mit voraussichtlich 292 Terawattstunden (TWh) etwa 2 Prozent über der Erzeugung des Vorjahres liegen. Das teilte die Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) am Umweltbundesamt (UBA) heute mit. Der Anteil erneuerbarer Energien am wieder anziehenden Bruttostromverbrauch steigt damit leicht auf rund 55 Prozent. In den letzten Jahren lag der Anteil bei 54,1 Prozent (2024) und 52,5 Prozent (2023).</p><p>„Grundsätzlich sind wir auf dem richtigen Weg. Die erneuerbare Stromerzeugung zeigt ein kontinuierliches Wachstum“, sagt Dirk Messner, Präsident des Umweltbundesamtes. „Doch für das Ziel, 80 Prozent des Bruttostromverbrauchs im Jahr 2030 aus erneuerbaren Quellen zu decken, muss der Ausbau weiter beschleunigt werden. Es bleibt entscheidend, das Ausbautempo durch verlässliche und geeignete Rahmenbedingungen hoch zu halten.“</p><p>Die Windenergie bleibt auch 2025 der mit Abstand wichtigste Energieträger im Strommix. Die Stromerzeugung aus <strong>Windenergie</strong> lag allerdings wegen historisch windschwacher Monate im ersten Halbjahr 2025 mit ca. 136 ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠ etwa zwei Prozent unter dem Niveau des Vorjahres. Mit einem Netto-Zubau von etwa 4,4 Gigawatt (GW) wurde zugleich deutlich mehr Windenergieleistung zugebaut als noch im Vorjahr (2,6 GW). Die insgesamt installierte Leistung der Windenergie stieg damit um sechs Prozent auf über 77 GW. Hohe Genehmigungszahlen für den Zubau von Windanlagen an Land lassen hier für die kommenden Jahre ein weiteres Wachstum erwarten. &nbsp;</p><p>Aufgrund des insgesamt sonnigen Wetters und eines weiterhin hohen Anlagenzubaus stieg die Stromerzeugung aus <strong>Photovoltaik-Anlagen</strong> im Vergleich zum Vorjahr um voraussichtlich 19 Prozent auf über 89 TWh. Die Bruttoleistung des Anlagenbestands erhöhte sich gleichzeitig um etwa 15,9 GW auf nunmehr insgesamt 118 GW. Neben Sonne und Wind lieferten auch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠-, Wasserkraft- und in geringem Maße auch Geothermieanlagen erneuerbaren Strom. Die Stromerzeugung aus Biomasse lag dabei leicht unter Vorjahresniveau (minus zwei Prozent). Bemerkenswert war der mit 21 Prozent ungewöhnlich starke Rückgang bei der Wasserkraft, der auf lange Trockenphasen im Frühjahr und Sommer zurückzuführen ist.</p><p>Um den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ nachhaltig voranzubringen, müssen neben dem Stromsektor auch die Wärmeversorgung und Verkehr effizienter werden und auf erneuerbare Quellen umgestellt werden. Die Herausforderungen in diesen Sektoren sind nach wie vor groß: Nach derzeitigem Datenstand stieg der Einsatz erneuerbarer Energien im <strong>Wärmebereich</strong> zwar merklich an (etwa acht Prozent), allerdings vor allem bedingt durch deutlich kälteres ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>⁠. Die aus Geothermie und Umweltwärme mittels Wärmepumpen nutzbar gemachte Wärmemenge stieg sogar um 17 Prozent und bleibt damit der dynamischste Treiber der Wärmewende. Da wegen der kühleren ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ auch mehr fossile Energieträger verbraucht wurden, ist in 2025 nur mit einer leichten Steigerung des Anteils erneuerbarer Energieträger im Wärmesektor insgesamt zu rechnen.</p><p>Nachdem im Vorjahr deutlich weniger <strong>Biokraftstoffe</strong> im Verkehrssektor eingesetzt wurden als in den Jahren davor, stieg die Nutzung von Biodiesel, Bioethanol und weiteren erneuerbaren Kraftstoffen im aktuellen Jahr 2025 wieder deutlich an. Insgesamt deuten die Zahlen auf einen Anstieg um fünf Prozent hin.</p><p>Übertroffen wurde dieses Plus allerdings noch von der Dynamik beim Einsatz erneuerbaren Stroms im <strong>Verkehr</strong>: Im Schienen- und Straßenverkehr wurde rechnerisch eine erneuerbare Strommenge von etwa 10,8 TWh eingesetzt – dies sind etwa 17 Prozent mehr als im Vorjahr. Die im Verkehr genutzte erneuerbare Strommenge entspricht gleichwohl lediglich vier Prozent der erneuerbaren Stromerzeugung.</p><p><strong>Weitere Informationen:</strong></p><p>Die Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) bilanziert im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWE) die Nutzung der erneuerbaren Energien. Sie hat auf der Grundlage aktuell verfügbarer Daten eine erste Schätzung zur Entwicklung der erneuerbaren Energien im Strom-, Wärme- und Verkehrssektor in 2025 erstellt. In den Bereichen Wärme und Verkehr sind die bisher vorliegenden Daten noch mit Unsicherheiten behaftet. Im März 2026 wird das jährliche AGEE-Stat-Hintergrundpapier „Erneuerbare Energien in Deutschland – Daten zur Entwicklung im Jahr 2025“ erscheinen. Mit dem Hintergrundpapier werden konsolidierte Daten für die Bereiche Strom, Wärme und Verkehr veröffentlicht und vertiefende Einschätzungen zur Entwicklung gegeben.</p>

METOP GOME-2 - Sulfur Dioxide (SO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational SO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. GDP 4.x performs a DOAS fit for SO2 slant column followed by an AMF / VCD computation using a single wavelength. Corrections are applied to the slant column for equatorial offset, interference of SO2 and SO2 absorption, and SZA dependence. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Tropospheric Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region (425-450 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Formaldehyde (HCHO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Water Vapour (H2O) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational H2O total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total H2O column is retrieved from GOME solar backscattered measurements in the red wavelength region (614-683.2 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Bromine Monoxide (BrO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational BrO (Bromine monoxide) total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to https://atmos.eoc.dlr.de/app/missions/gome2

METOP GOME-2 - Ozone (O3) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

1 2 3 4 599 100 101