API src

Found 1365 results.

Related terms

GTS Bulletin: SNLV11 UMRR - Surface data (details are described in the abstract)

The SNLV11 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SN): Non-standard synoptic hour A1A2 (LV): Latvia (Remarks from Volume-C: NilReason)

GTS Bulletin: ISND86 AMDN - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND86 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 01, 02, 04, 05, ... UTC) A2 (D): 90°E - 0° northern hemisphere (Remarks from Volume-C: NATIONAL AUTOMATIC SYNOP)

GTS Bulletin: ISND77 AMDW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND77 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 01, 02, 04, 05, ... UTC) A2 (D): 90°E - 0° northern hemisphere (Remarks from Volume-C: NATIONAL AUTOMATIC SYNOP)

GTS Bulletin: SNVX81 EDZW - Surface data (details are described in the abstract)

The SNVX81 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SN): Non-standard synoptic hour (Remarks from Volume-C: SHIP)

Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen

Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.

Regionale Wirksamkeit und Auswirkungen von Marine-Cloud-Brightening-Anwendungen (RegMCB)

Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.

Entwicklung von tropischer hochreichender Konvektion abgeleitet aus bodengebundenen abbildenden Spektroradiometermessungen

Im Rahmen des Projekts soll aus bodengebundenen Wolkenseitenmessungen der reflektierten Strahlung mittels eines abbildenden Spektrometersystems von tropischer hochreichender Konvektion auf das Vertikalprofil der mikrophysikalischen Eigenschaften der Wolke geschlossen werden. Damit soll die vertikale Entwicklung von hochreichender Konvektion, die eine wesentliche klimarelevante Rolle spielt, unter Berücksichtigung des Einflusses von Aerosolpartikeln und von thermodynamischen Bedingungen auf das Tropfenwachstum charakterisiert werden. Die geplanten Messungen sollen auf einem 320 m hohen Messturm (ATTO: Amazonian Tall Tower Observatory), der kürzlich im brasilianischen Regenwald errichtet wurde, stattfinden. ATTO ist mit Messgeräten ausgestattet, die meteorologische, chemische und Aerosolparameter liefern. Die Messregion bietet ideale Beobachtungsbedingungen mit klar definierten Jahreszeiten (Regen- und Trockenzeit), täglicher Konvektion und variablen Aerosolbedingungen. Aus den Messungen eines neuen abbildenden Spektrometersystems, SPIRAS (SPectral Imaging Radiation System) sollen Vertikalprofile der thermodynamischen Phase und der Partikelgröße mit hoher zeitlicher und räumlicher Auflösung und mit Hilfe von adaptierten Verfahren unter Verwendung von dreidimensionalen Strahlungstransportsimulationen abgeleitet werden. Damit sollen vertikale Bereiche, die das Tropfenwachstum beschreiben (Diffusion, Koaleszenz, Mischphasenbereich und Vereisung), identifiziert werden. Zusätzliche Messungen einer Infrarotkamera und eines scannenden Depolarisations-Lidars werden für die Höhen- und Temperaturbestimmung der beobachteten Wolkenelemente herangezogen. Zusätzlich werden die Polarisationsmessungen des Lidars zur Bestimmung der thermodynamischen Phase verwendet, um den wichtigen Phasenübergang zu identifizieren. Mit Hilfe der gewonnenen Daten werden außerdem Annahmen (Effektivradius als konservative Wolkeneigenschaft) wie sie von Ableitungsverfahren zur Bestimmung von mikrophysikalischen Wolkenprofilen aus Satellitenmessungen gemacht werden, überprüft.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), NAWDEX - North Atlantic Waveguide and Downstream Impact Experiment

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.

Aerosol-Wolken-Niederschlags-Wechselwirkungen für regionale Emissionen

Aerosol-Wolken-Wechselwirkungen stellen einen der wesentlichen Unsicherheitsfaktoren bei Verständnis und Quantifizierung der geographischen Verteilung von Wolken- und Niederschlagseigenschaften, aber auch des Strahlungsantriebs des globalen Klimawandels dar. Die grundlegende Idee des Projekts ist es, regional unterschiedliche Trends in anthropogenenen Emissionen von Aerosolen zu nutzen, um deren Einfluss auf Trends in Wolken-, Niederschlags- und Strahlungsgrößen zu bestimmen. Hierzu sollen verschiedene Szenarien in Multi-Klimamodell-Ensembles ('historische' Simulationen mit allen Strahlungsantrieben und 'Aerosol'-Simulationen mit allen Antrieben außer anthropogenem Aerosol) analysiert werden und mit Beobachtungsdaten verglichen werden. Konkret werden vier Fragen untersucht:(i) Welche Beziehung besteht zwischen regionalen Trends in Aerosolemissionen und Wolken-Strahlungs-Effekten? - Diese Studien analysieren Simulationen aus dem Multi-Modell-Ensemble.(ii) Wie erfolgreich reproduzieren die Modelle beobachtete Trends? Hier werden die Klimamodelle mit Beobachtungsdaten verglichen.(iii) Welchen Einfluss haben Emissionstrends für Aerosole und resultierende Strahlungsantriebe auf die atmosphärische Zirkulation? Simulationen mit dem Aerosol-Klima-Modell ECHAM6-HAM2 sollen für drei Zeitscheiben durchgeführt und analysiert werden.(iv) Welche Rolle spielen Emissionstrends für Änderungen in Extremniederschlägen in Südost-Asien? - Mit speziellen Simulationen sollen die verschiedenen Hypothesen getestet werden.

GTS Bulletin: FCSN01 ESIB - Forecast (details are described in the abstract)

The FCSN01 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FC): Aerodrome (VT < 12 hours) A1A2 (SN): Sweden (Remarks from Volume-C: NilReason)

1 2 3 4 5135 136 137