Das Verständnis darüber, wie lichtabsorbierende atmosphärische Aerosole, insbesondere brauner Kohlenstoff (BrC-Aerosole), das Klima beeinflusst, bleibt eine zentrale Unsicherheit in der Atmosphärenforschung. Vorläufige, an einzelnen Tröpfchen von BrC-Aerosolen durchgeführte Experimente haben gezeigt, dass gängige atmosphärische Prozesse wie Aerosolverdunstung und simulierte Sonneneinstrahlung zu einer Änderung des Phasenzustands des Aerosols von flüssigen Tröpfchen zu einer semi-festen Phase führen. Diese Änderung des Phasenzustands wirkt sich auf die Bildung von Wolkentröpfchen und die nachfolgenden optischen Eigenschaften der Wolken aus (z.B. die Absorption und Streuung der Sonnenstrahlung und die Lebensdauer der Wolken). Daher zielt dieser Projektantrag darauf ab, den Einfluss des BrC-Aerosol-Phasenzustands und der photochemischen Alterung auf die mikrophysikalischen und optischen Eigenschaften von Aerosolen und Wolken zu bestimmen. Für die Experimente sollen die Einrichtungen des Instituts für Meteorologie und Klimaforschung - Atmosphärische Aerosolforschung (IMK-AAF) am Karlsruher Institut für Technologie (KIT) genutzt werden, darunter Einzelpartikelexperimente, die mit einer elektrodynamischen Waage (EDB) durchgeführt werden, sowie Aerosol-Ensemble-Messungen, die mit der Aerosol- und Wolkensimulationskammer AIDA durchgeführt werden. Zu den Hauptzielen des Projekts, das Einzelpartikelmessungen beinhaltet, gehören die Untersuchung des Phasenzustands und der Morphologie verschiedener Arten von BrC-Aerosolen über einen Bereich atmosphärisch relevanter Bedingungen; die Bestimmung des Phasenzustands von BrC-Aerosolen, wenn es mit einer anorganischen Komponente gemischt wird; und die Bestimmung des Effekts der photochemischen Alterung auf den Phasenzustand sowie die chemische Zusammensetzung und die optischen Eigenschaften von BrC-Aerosolen. Die Hauptziele des Projekts, das Aerosol-Ensemble-Messungen beinhaltet, sind die Untersuchung des Einflusses des Phasenzustands von BrC-Aerosol und der photochemischen Alterung auf die Bildung von Wolkentröpfchen sowie die Eiskeimbildung und die damit verbundenen optischen Eigenschaften von Aerosol und Wolken. Insgesamt wird dieses Projekt das Verständnis der Rolle von lichtabsorbierenden Aerosolen für das Klima verbessern.
Das Absorptionsvermoegen der Atmosphaere fuer kurzwellige Strahlung zwischen 0.3 und 3.5 Mikrometer Wellenlaenge soll am Boden und vom Flugzeug aus gemessen werden. Erfasst werden die Absorption durch Wasserdampf, in Wolkentropfen und in Partikeln. Hauptziel sind Absorptionsmessungen als Funktion der Hoehe unter stark wechselnden Bedingungen, d.h. in Wolken und bei durchbrochener Bewoelkung.
In Wüstenökosystemen wird die zeitliche Dynamik durch Nass-Trocken-Zyklen bestimmt, und diese werden durch den Klimawandel zunehmend gestört. Niederschläge in Wüstenökosystemen lösen einen unmittelbaren CO2-Anstieg aus, verbunden mit erheblichen Emissionen von Petrichor, dem "Geruch von Regen". Dieser erdige Geruch setzt sich aus verschiedenen flüchtigen organischen Verbindungen (VOC) zusammen, die mit dem Wind über große Entfernungen transportiert werden. Die Wassertröpfchen, die mit trockenen Böden in Berührung kommen, setzen zuvor gebundene VOCs frei und regen Bakterien und Pilze zur Neuproduktion von VOCs an. Sechzig Jahre nach der ersten Beschreibung von Petrichor ist immer noch wenig über seine Rolle in der Bodenökologie und seine Bedeutung für die Atmosphärenchemie bekannt.Biotische Interaktionen zwischen Mitgliedern mikrobieller Gemeinschaften im Boden erfolgen durch den Austausch von Signalmolekülen. Flüchtige Signale wirken auf einer größeren räumlichen Skala als lösliche Verbindungen und werden zunehmend als entscheidende Infochemikalien zur Vermittlung von intra- und interspezifischen Interaktionen zwischen Bodenmikrobiota anerkannt. Dennoch ist wenig über die spezifischen Funktionen von VOCs und ihre Rolle bei der Vermittlung von Wechselwirkungen zwischen Organismen bekannt, insbesondere in Trockengebieten.Die Emissionen von Petrichor aus Trockengebieten wie der Negev-Wüste (Israel) werden sich in naher Zukunft verändern, da die Niederschlagsmenge bis 2050 voraussichtlich um ~40 % zunehmen wird. Biogene flüchtige organische Verbindungen (VOC) - insbesondere Terpenoide und Benzoide - sind als wesentliche Akteure der Atmosphärenchemie bekannt und beeinflussen das Klima durch Wolkenbildung und die Entstehung sekundärer organischer Aerosole die Strahlungsenergie absorbieren und streuen. Mikrobielle Bodengemeinschaften dominieren die Wüstenökosysteme, die sich über 20 % der Erdoberfläche erstrecken. Daher ist es dringend erforderlich, die Rolle der mikrobiellen Gemeinschaften im Wüstenboden für die Chemie der Atmosphäre zu untersuchen. Unser Ziel ist es, die Quellen, Regulierungsmechanismen und Kontrollfaktoren der VOC-Emissionen in Wüstenökosystemen zu verstehen, was für die Erstellung umfassender globaler Klimaprojektionsmodelle von größter Bedeutung ist. Zu diesem Zweck wollen wir Veränderungen in der Petrichor-Zusammensetzung entlang eines Trockenheitsgradienten in der Negev-Wüste (Israel) quantifizieren und charakterisieren, die gesamte aktive mikrobielle Gemeinschaft (Eukaryonten, Prokaryonten, Archaeen) nach Niederschlagsereignissen in den Biokrusten der Wüste und in tieferen Bodenschichten identifizieren, mit Hilfe von Netzwerkanalysen Kandidaten für die Produktion von und die Reaktion auf VOC ermitteln und die Rolle der VOC durch Experimente mit mikrobiellen Isolaten und durch die Anwendung von Inhibitoren der wichtigsten Petrichor-VOC in Böden verifizieren und die globalen Auswirkungen der Petrichor-Emissionen hochskalieren.
Das hier vorgeschlagene Projekt basiert auf und ergänzt Untersuchungen die im Rahmen des DFG-Transregios 172 'Arktische Klimaveränderungen', und hier speziell dem Projekt B04 'Ship-based physical and chemical characteristics and sources of Arctic ice nucleating particles and cloud condensation nuclei', durchgeführt werden. Im Rahmen von TR 172, B04, ist es u.a. das Ziel, über schiffbasierte Messungen detaillierte Informationen hinsichtlich arktischer eisnukleierender Partikel (Anzahlkonzentration; chemische Natur, mineralisch und/oder organisch; Herkunft, lokal oder Ferntransport) zu erlangen. Diese schiffsbasierten Messungen können allerdings nur ein erster Schritt auf dem Weg zu einem besseren Verständnis von Aerosol-Wolken-Wechselwirkungen in der Arktis im allgemeinen, und der Vereisung Arktischer Wolken im Besonderen, sein. Hierzu sind u.a. Informationen aus unterschiedlichen Höhen (innerhalb der planetaren Grenzschicht und in der freien Troposphäre) erforderlich. Daher sollen die in TR 172, B04, geplanten Aktivitäten u.a. durch INP-bezogene Messungen an Bord des Forschungsflugzeuges HALO ergänzt werden. Spezifisch zielen wir auf die Bestimmung von INP-Anzahlkonzentrationen, und über Analyse der chemischen Partikelzusammensetzung auf Hinweise bzgl. der INP Herkunft / Quellen. Im Rahmen des vorliegenden Antrages werden wir uns daher auf die Entwicklung, den Test und die Zulassung eines Hochvolumenstrom-Aerosolpartikelsammlers für sub- und supermikrone Aerosolpartikel für das Forschungsflugzeug HALO konzentrieren. Das Sammlersystem wird im Wesentlichen aus einer adaptierten Version des schon existierenden (aber noch zuzulassenden) 'Micrometre Aerosol Inlet' (MAI) und einem noch zu entwickelnden Hochvolumenstrom-Filtersammler, bestehen. Die Berücksichtigung hoher Volumenströmen (Größenordnung 100 l/min) ist aufgrund der zu erwartenden niedrigen Aerosolpartikel- und INP-Konzentrationen, und dem daraus resultierenden Bedarf nach der Sammlung großer Luftvolumina erforderlich. Der erste wissenschaftliche Einsatz des entwickelten Systems soll im Rahmen der ARCTIC-HALO-Kampagne erfolgen, welche für die zweite Phase des TR 172 (2020-2023) geplant ist. Nach seiner Entwicklung, steht das Sammlersystem (Einlass und/oder Filtersammler) für sub- und supermikrone Aerosolpartikel für weitere HALO-Missionen zur Verfügung. Zur Durchführung der notwendigen Arbeiten beantragen wir Mittel für eine 75 % und eine 50% PostDoc-Stelle für jeweils 3 Jahre. Ferner beantragen wir Mittel für die Adaptierung und die Zulassung des Hochvolumenstrom-Aerosolpartikelsammlers. Alle anderen direkten Kosten werden aus dem Haushalt des TROPOS übernommen.
The SILV21 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SI): Intermediate synoptic hour A1A2 (LV): Latvia (Remarks from Volume-C: NilReason)
Hochwasser sind aufgrund ihres hohen Schadenspotentials von großer Bedeutung für die Gesellschaft. Hochwasser sind aber auch auf Grund der auftretenden nichtlinearen Wechselwirkungen und Rückkopplungen, der interessanten Fragen der Verallgemeinerungsfähigkeit von Erkenntnissen und der resultierenden Notwendigkeit einer interdisziplinären Betrachtung ein sehr interessantes Forschungsthema. Die Entstehung und die maßgebenden Prozesse extremer Hochwasser sind bisher nicht sehr gut bekannt, aber neue, zeitlich und räumlich hochauflösende Daten und neue Ansätze zur Quantifizierung von Wechselwirkungen im Rahmen von koordinierten Forschungsarbeiten versprechen nunmehr einen großen Durchbruch. Ziel dieser Forschungsgruppe ist es, die Prozesse in der Atmosphäre, den Einzugsgebieten und den Flusssystemen sowie deren Wechselwirkungen, die zu extremen Hochwasserereignissen führen, in einer räumlich und zeitlich kohärenten Weise zu verstehen. Hierzu wurde ein innovatives und kohärentes Konzept wurde entwickelt, um so das Potenzial der Zusammenarbeit zwischen den Forschungspartnern zu maximieren. Es besteht aus drei Integrationsebenen: Forschungsthemen, die sich auf die wissenschaftlichen Fragen konzentrieren, Teilprojekte, die sich auf bestimmte Forschungsaufgaben konzentrieren, und ein gemeinsames Studienobjekt in Form von extremen Hochwasserereignissen in Deutschland und Österreich. Mit Hilfe von Skalen als verbindlichem Element ist der Forschungsplan in die Forschungsthemen: - Ereignisse und Prozesse, - räumliche (regionale) Variabilität, - zeitliche (dekadische) Variabilität sowie - Unsicherheit und Vorhersagbarkeit gegliedert. Die Mitglieder der Forschergruppe wurden so ausgewählt, dass ein Team führender Experten mit hervorragenden Fachkenntnissen, die sich in Bezug auf Prozesse, Methoden und regionalem Wissen ergänzen, gebildet wurde. Die Kooperations- und Kommunikationsstrategie wurde durch thematische Clustergruppen, die mehrere Teilprojekte bündeln, durch regelmäßige Treffen der Clustergruppen, das jährliche Projektsymposium und eine Cloud zum Datenaustausch umgesetzt. Die Cluster werden nun durch thematische Arbeitsgruppen ersetzt, die ergebnisorientiert methodische Entwicklungen vorantreiben sollen. Eine konsequente Umsetzung der Chancengleichheit und eine intensive Nachwuchsförderung waren wesentliche Merkmale der ersten Phase. Diese Aktivitäten werden bei hoher personeller Kontinuität nunmehr fortgesetzt um Wissenschaftlerinnen und Nachwuchswissenschaftler in hohem Maße zu fördern. Insgesamt werden die Ergebnisse der Forschergruppe das Verständnis des gekoppelten Systems von hochwasserauslösenden Prozessen in der Atmosphäre, den Einzugsgebieten und Flüssen grundlegend verändern, was erhebliche Auswirkungen auf eine Reihe von Wissenschaftsdisziplinen und die Gesellschaft haben wird.
The ISND01 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 01, 02, 04, 05, ... UTC) A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10004;UFS TW Ems;10015;Helgoland;10020;List auf Sylt;10035;Schleswig;10055;Fehmarn;10147;Hamburg-Fuhlsbüttel;10162;Schwerin;10184;Greifswald;10200;Emden;10224;Bremen;10270;Neuruppin;10338;Hannover;10361;Magdeburg;10393;Lindenberg;10400;Düsseldorf;10469;Leipzig/Halle;10488;Dresden-Klotzsche;10506;Nürburg-Barweiler;10548;Meiningen;10637;Frankfurt/Main;10685;Hof;10738;Stuttgart-Echterdingen;10763;Nürnberg;10788;Straubing;10852;Augsburg;10946;Kempten;) (Remarks from Volume-C: SYNOP)
The SADL32 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (DL): Germany (The bulletin collects reports from stations: EDDB;BERLIN-Brandenburg INT ;EDDC;DRESDEN ;EDDE;ERFURT ;EDDG;MUENSTER OSNABRUECK ;EDDP;LEIPZIG HALLE ;EDDR;SAARBRUECKEN ;EDDW;BREMEN ;EDZO;)
The ISND10 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10067;Marienleuchte;10126;Wittmundhafen;10136;Nordholz (Flugplatz);10172;Laage (Flugplatz);10238;Bergen;10246;Faßberg;10304;Meppen;10334;Wunstorf;10335;Bückeburg;10343;Celle;10439;Fritzlar (Flugplatz);10476;Holzdorf (Flugplatz);10500;Geilenkirchen (Flugplatz);10502;Nörvenich (Flugplatz);10516;Koblenz (Falkensteinkaserne);10613;Büchel (Flugplatz);10618;Idar-Oberstein;10743;Niederstetten;10771;Kümmersbruck;10837;Laupheim;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10954;Altenstadt;) (Remarks from Volume-C: SYNOP)
| Origin | Count |
|---|---|
| Bund | 1307 |
| Europa | 155 |
| Land | 311 |
| Wissenschaft | 10 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 6 |
| Ereignis | 1 |
| Förderprogramm | 972 |
| Repositorium | 4 |
| Text | 7 |
| unbekannt | 329 |
| License | Count |
|---|---|
| geschlossen | 7 |
| offen | 983 |
| unbekannt | 329 |
| Language | Count |
|---|---|
| Deutsch | 780 |
| Englisch | 725 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 6 |
| Dokument | 3 |
| Keine | 766 |
| Webseite | 546 |
| Topic | Count |
|---|---|
| Boden | 757 |
| Lebewesen und Lebensräume | 1075 |
| Luft | 1319 |
| Mensch und Umwelt | 1319 |
| Wasser | 732 |
| Weitere | 1284 |