API src

Found 1341 results.

Related terms

Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt C03: Multiskalige Dynamik und Vorhersagbarkeit von Medicanes und atlantischen subtropischen Zyklonen

Eine ensemblebasierte Multiskalenanalyse der Dynamik und Vorhersagbarkeit von Medicanes wird durchgeführt und mit Fällen tropischer Umwandlung von subtropischen Zyklonen im Nordatlantik verglichen. Die Analyse reicht von vorhergehende Rossbywellen bis zu Antriebsmechanismen für Konvektion auf der Mesoskala. Visualisierungsmethoden helfen dabei, die komplexen Wechselwirkungen zwischen verschiedenen Prozessen und das damit verbundene Anwachsen der Vorhersageunsicherheit zu beleuchten. Die Auswertung von Ensembledaten erlaubt die Untersuchung von konsistenten Entwicklungen der relativ seltenen Medicanes.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen

In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.

Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen

Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.

Wolkentröpfchenanzahlkonzentration aus mit Atmosphärenmodellierung verbesserten Satellitenbeobachtungen für die Analyse von Aerosol-Wolken-Wechselwirkungen

Aerosol-Wolken-Wechselwirkungen führen zu einem effektiven Strahlungsantrieb, der eine der wesentlichen Unsicherheiten im Verständnis und der Interpretation des beobachteten Klimawandels darstellt. Globale Beobachtungen sind nötig, um die relevanten Prozesse besser zu quantifizieren, aber ein wesentlicher Parameter – die Wolkentröpfchenanzahlkonzentration (cloud droplet number concentration, CDNC, Nd) – ist nicht aus operationellen Produkten verfügbar. Auf Basis von substantiellen Vorarbeiten wird CDNC4aci auf verlässliche Satellitenprodukte für Nd hinarbeiten und hier auf einer engen Modell – Daten-Kombination aufbauen: seit Neuem verfügbare wolkenauflösende Simulationen instruieren die Weiterentwicklung der Satellitenprodukte, und umgekehrt werden die Daten genutzt, um das Verständnis und die Bestimmung der Aerosol-Wolken-Wechselwirkungen im Modell und in statistischer Analyse zu verbessern. Konkret wird das Modell Beobachtungen aus verschiedenen Winkel und der Polarisierung für bessere Nd-Produkte nutzen, dazu in den Ableitungsalgorithmen aus dem Modell synthetisierte vertikale Wolkenprofile für unterschiedene Wolkenregime implementieren, eingehend Produktfehler quantifizieren und korrigieren, und statistisch Aerosol-Wolken-Prozesse analysieren. Das Projekt wird in den Datenprodukten enthaltenen Informationen mit Hilfe von Modellsensitivitätsstudien bewerten, Modell und Daten mit Hilfe von Vorwärtsoperatoren kompatibel machen, und Aerosol-Wolken-Wechselwirkungen im globalen Klimamodell untersuchen, nachdem dieses mit Hilfe der neuen Daten evaluiert wurde. Diese Analysen zielen auf eine zwischen Daten und revidiertem Model konsistente und schlüssige Quantifizierung des Aerosol-Wolken-Strahlungsantrieb ab.

Wechselwirkungen zwischen Aerosolen und niedrigen Wolken verstehen mit maschinellem Multi-Target-Lernen

Niedrige Wolken der marinen Grenzschicht kühlen das Erdsystem und spielen somit eine entscheidende Rolle für die Energiebilanz der Erde. Die physikalischen Eigenschaften dieser Wolken werden von Aerosolen beeinflusst. Veränderungen in der Zusammensetzung oder Konzentration atmosphärischer Aerosole können daher die Strahlungswirkung und somit das Kühlungspotential dieser Wolken verändern. Die Quantifizierung der Auswirkungen atmosphärischer Aerosole auf marine Grenzschichtwolken mit Beobachtungsdaten ist eine große Herausforderung, da viele Prozesse gleichzeitig wirken, statistisch schwer zu trennen sind und Wolken gegen Aerosoleinflüsse “gepuffert” sein können. Globale Klimamodelle können diese Prozesse nicht auflösen, sodass sie über Parametrisierungen festgeschrieben werden müssen, welche wiederum mit Unsicherheiten belastet sind. Durch diese Probleme in der Auswertung von Beobachtungen sowie in Modellen ist die Quantifizierung von Aerosol-Wolken-Interaktionen weiterhin eine der größten Unsicherheiten der Klimawissenschaften, was die Abschätzung der Klimasensitivität erschwert.Das beantragte Forschungsprojekt adressiert diese Herausforderungen und wird die Wirkung von Aerosolen auf marine Grenzschichtbewökung mit globalen Beobachtungsdaten quantifizieren und die Parameterisierungen dieser Prozesse in globalen Klimamodellen evaluieren. In aktuellen Studien haben statistische Modelle aus dem Bereich des maschinellen Lernens geholfen, das Aerosol-Wolken-Meteorologie-System besser zu verstehen und zu quantifizieren, da sie in der Lage sind, Effekte von Aerosolen von anderen atmosphärischen Größen zu isolieren. Das beantragte Forschungsprojekt wird sich auf maschinelle Lernmethoden stützen, welche zusätzlich in der Lage sind, alle relevanten Wolkeneigenschaften gleichzeitig vorherzusagen, und damit mögliche Puffer explizit berücksichtigen und quantifizieren können. Die statistischen Modelle werden verwendet, um Zusammenhänge und Prozesse in globalen Beobachtungsdaten und dem Output globaler Klimamodelle zu analysieren. Auf diese Weise kann eine prozessorientierte Evaluierung von Modellparameterisierungen erreicht werden, die sich deutlich von dem üblichen Vergleich klimatologisch gemittelter Wolkenmuster abhebt. So können Modellparametrisierungen beobachtungsgestützt eingegrenzt, und der Strahlungsantrieb durch Wechselwirkungen zwischen Aerosolen und marinen Grenzschichtwolken quantifiziert werden.

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt D02: Modellierung von Aerosolen und Aerosol-Wolken-Wechselwirkungen in der Arktis

Dieses Teilprojekt befasst sich mit der Rolle von Aerosolpartikeln im arktischen Klima und deren Änderung in den vergangenen aber auch in zukünftigen Jahrzehnten. Unter Verwendung eines allgemeinen Zirkulationsmodells der neuen Generation wird der Aerosoltransport und der Einfluss auf Strahlung und Wolken untersucht. Basierend auf Modellsimulationen wird der direkte Strahlungsantrieb und damit verbundene dynamische Rückkopplungsmechanismen für die arktische Region quantifiziert. Dies beinhaltet den Einfluss von Alterungs- und Mischungsprozessen auf mikrophysikalische und optische Eigenschaften als auch auf den Schnee/Eis-Albedoantrieb. Ein besonderer Fokus wird dabei auf Rußpartikel resultierend aus vermehrten Schiffs- und Waldbrandemissionen gelegt. Aerosol-Wolken-Wechselwirkungen und der Aerosol indirekte Strahlungsantrieb werden untersucht.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Charakterisierung von orographisch beeinflusster Bereifung und sekundärer Eisproduktion und deren Auswirkungen auf Niederschlagsraten mittels Radarpolarimetrie und Dopplerspektren (CORSIPP)

Niederschlag ist eine wichtige Komponente des hydrologischen Kreislaufs. Um zu verstehen, wie sich der Wasserhaushalt in einem sich erwärmenden Klima verändert, ist ein umfassendes Verständnis der Niederschlagsbildungsprozesse erforderlich. In den mittleren Breiten wird der meiste Niederschlag unter Beteiligung der Eisphase in Mischphasenwolken erzeugt, aber die genauen Interaktionen zwischen Eis, flüssigem Wasser, Wolkendynamik, orografischem Antrieb und Aerosolpartikeln während der Eis-, Schnee- und Regenbildung sind nicht gut verstanden. Dies gilt insbesondere für Bereifungs- und Sekundäre Eisproduktion (SIP) Prozesse, die mit den größten quantitative Unsicherheiten in Bezug auf die Schneefallbildung verbunden sind. Die Lücken in unserem Verständnis von SIP- und Bereifungsprozesse zu schließen, ist vor allem für Gebirgsregionen entscheidend, die besonders anfällig für Änderungen des Niederschlags und des Wasserhaushalts, wie z.B. des Verhältnisses zwischen Regen und Schneefall, sind. In diesem Antrag wird ein Forschungsprojekt vorgeschlagen, das sich dem Verständnis von Bereifungs- und SIP-Prozessen in komplexem Terrain widmet. Dazu werden wir ein innovatives, simultan sendendes und simultan empfangendes (STSR), scannendes W-Band-Wolkenradar zusammen mit einer neuartigen In-situ-Schneefallkamera eine ganze Wintersaison lang in den Rocky Mountains von Colorado, USA betreiben. Die Instrumente werden Teil der Atmospheric Radiation Measurement (ARM) Surface Atmosphere Integrated Field Laboratory (SAIL) Kampagne sein, bei der ein Ka-Band und ein X-Band Radar eingesetzt werden. Durch die Kombination von spektralen polarimetrischen und Multifrequenz-Doppler-Radarbeobachtungen mit empirischen und Bayes'schen Machine Learning Verfahren werden wir Bereifungs- und SIP-Ereignisse identifizieren und deren Einfluss auf die Schneefallrate quantifizieren. Dies erfordert die Erweiterung des Passive and Active Microwave radiative TRAnsfer Modells (PAMTRA) mit zusätzlichen polarimetrischen Variablen und modernsten Berechnungen von Streueigenschaften. Durch die Nutzung der umfangreichen kollokierten Messungen während SAIL wird es ermöglicht, die beobachteten Prozessraten mit Umweltbedingungen wie Temperatur, Luftfeuchtigkeit und Flüssigwasserpfad sowie mit der Wolkendynamik in Beziehung zu setzen. Darüber hinaus werden wir einen besonderen Fokus auf den Einfluss von vertikalen Luftbewegungen legen, die unter orographischen Bedingungen häufig auftreten. Zusammengenommen wird das vorgeschlagene Projekt unser Verständnis von Bereifungs- und SIP-Prozessen in komplexem Gelände verbessern.

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Research group (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE)

River floods are extremely important to society because of their potential damage and fatalities. Floods are also very interesting research subjects because of the intriguing non-linear interactions and feedbacks involved, interesting issues of generalisation and the need for investigating them in an interdisciplinary way. Extreme floods are not very well understood to date but new, high resolution data and new concepts for quantifying interactions promise a major breakthrough of a body of research carried out in a coordinated way. The objective of this Research Unit is to understand in a coherent way the atmospheric, catchment and river system processes and their interactions leading to extreme river floods and how these evolve in space and time. An innovative and coherent concept has been adopted in order to maximise the potential of the cooperation between the research partners which consists of three layers of integration: research themes focusing on the science questions, subprojects revolving around specific research tasks, and a joint study object of extreme floods in Germany and Austria. Using scales as a binding element, the research plan is organised into the research themes of event processes, spatial (regional) variability, temporal (decadal) variability, and uncertainty and predictability. The members of the Research Unit have been selected to obtain a team of leading experts with expertise that is complementary in terms of processes, methods and regional knowledge. The cooperation and communication strategy will be implemented through themed cluster groups, combining several subprojects, regular meetings of the cluster groups, an annual project symposium and a private cloud facilitating data exchange on the joint study object. Equal opportunity policies will be adopted and female and early career scientists will be promoted in a major way. Overall, the outcomes of the Research Unit will constitute a step change in the understanding of the coupled system of flood processes in the atmosphere, catchments and rivers which will have major implications for a range of sciences and the society.

GTS Bulletin: ISND41 UMRR - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND41 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere (Remarks from Volume-C: NilReason)

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), CIRRUS-HL – Die HALO Mission zu Zirren in hohen Breiten Umbrella Proposal HALO2020 - CIRRUS-HL

Die Mission CIRRUS-HL – Zirren in hohen Breiten nutzt das Forschungsflugzeug HALO gemeinsam mit Modellen und Satelliten, um die Nukleation, den Lebenszyklus und die Klimawirkung von Eiswolken in hohen Breiten, einer Region mit massiven anthropogenen Klimaänderungen, genauer zu bestimmen. InhaltSchnellste und massivste anthropogen verursachte Änderungen der Erdoberflächentemperatur finden in hohen Breiten statt. Hier führen Eiswolken im Winter zu einem großen positiven Strahlungsantrieb. Direkte Messungen der mikrophysikalischen Eigenschaften von Eiswolken und ihrer Variabilität sind jedoch unvollständig und Eisanzahlkonzentrationen werden in Klimamodellen nicht adäquat repräsentiert, dies schränkt die Aussagekraft von Klimamodellen in hohen Breiten deutlich ein. Die Messkampagne CIRRUS-HL, in den letzten 6 Jahren die einzige HALO Messkampagne mit in situ Wolken-Instrumentierung nutzt neuere Wolkensonden gemeinsam mit umfangreichen Spurengas-, Aerosol- und Strahlungs-Messungen um die Nukleation, den Lebenszyklus und die Klimawirkung von Eiswolken in hohen Breiten genauer zu bestimmen. Die Flugzeugmessungen werden begleitet von Messaktivitäten von Bodenstationen und Satelliten, und liefern Daten für Prozessmodelle und die Evaluierung von globalen Klimamodellen. Die CIRRUS-HL Mission ist eingebunden in einen internationalen Verbund an Messaktivitäten in der Arktis und besitzt als Alleinstellungsmerkmal einen Fokus auf Eiswolken. Von Oktober bis Dezember 2020 werden in Nordeuropa und Kanada 20 Flüge mit dem Forschungsflugzeug HALO, stationiert in Oberpfaffenhofen und Keflavik, Island, durchgeführt, um die Eigenschaften von Eiswolken genau zu vermessen, die sich in verschiedenen dynamischen Regimes wie zum Beispiel Frontensystemen oder orographisch induzierten Hebungen von Luftmassen gebildet haben. Eigenschaften von Zirren, die sich entweder unterhalb von 238 K in situ homogen oder heterogen gebildet haben, oder die ihren Ursprung in einer flüssigen oder Mischphasen-Wolke bei Temperaturen oberhalb von 238 K haben werden differenziert. Die CIRRUS-HL Mission liefert 1.) einen neuen Datensatz der mikrophysikalischen Eigenschaften von Eiswolken in hohen Breiten zur Verbesserung des Prozessverständnisses der Eisnukleation und zum Vergleich mit Satellitenbeobachtungen und Klimamodellen, 2.) neue Einblicke in den Transport von Aerosolen in hohe Breiten und ihre Prozessierung in Mischphasen- und Eiswolken und 3.) umfassende Beobachtungen von Strahlungseigenschaften von Eiswolken in hohen Breiten im Frühwinter. Der umfangreiche Datensatz zu Eiswolken dient dazu, das Verständnis der Rolle von arktischen Zirren im Klimasystem zu erhöhen.

1 2 3 4 5133 134 135