API src

Found 1365 results.

Related terms

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, COALA – Kontinuierliche Beobachtungen von Aerosol-Wolken-Interaktion in der Antarktis

Das unvollständige Verständnis der Wechselwirkung von Aerosolpartikeln mit Strahlung, Wolken und Niederschlag ist eine Schlüsselfrage der Atmosphärenforschung. Detaillierte Beobachtungen sind erforderlich, um die komplexen Zusammenhänge zwischen den beteiligten Prozessen zu erfassen. Dies gilt insbesondere für die abgelegene Region der Antarktis, wo bodengestützte, vertikal aufgelöste Langzeitbeobachtungen von Aerosol, Wolken und Niederschlag selten sind und Satellitenbeobachtungen technischen Beschränkungen unterliegen. Um die Messlücke mit modernsten Beobachtungen zu schließen, wird TROPOS die Messplattform OCEANET-Atmosphere zwischen den Südsommern 2022/23 und 2023/24 an der Station Neumayer III (70,67°S, 8,27°W) einsetzen. OCEANET-Atmosphere ist ein autonomer, polar-erprobter, modifizierter 20-Fuss-Messcontainer, der erst kürzlich erfolgreich während MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) eingesetzt wurde. Die Instrumentierung während COALA umfasst ein Mehrwellenlängen-Polarisations- und ein Doppler-Lidar, ein 35-GHz-Wolkenradar, ein Mikrowellenradiometer sowie jeweils ein 1-d und 2-d-Niederschlags-Disdrometer. OCEANET ist die einzige polare Einzelcontainer-Plattform, die mit Mehrwellenlängen-Lidar, Radar und Mikrowellenradiometer Wolken und Niederschlag sowie mit Doppler-Lidar und -Radar turbulente Luftbewegungen in Wolken an verschiedenen Messstandorten beobachten kann.Die zeitliche und vertikale Auflösung des gewonnenen Datensatzes wird in der Größenordnung von 30 s (2 s für Vertikalgeschwindigkeitsbeobachtungen) und 30 m liegen. COALA ist ein 3-Jahres-Projekt. Ein Postdoktorand wird für den Einsatz von OCEANET-Atmosphere bei Neumayer III und die Datenanalyse verantwortlich sein und dabei von Experten am TROPOS unterstützt. Die Beobachtungen werden in erster Linie dazu dienen, die Schlüsselhypothese von COALA zu untersuchen, dass Aerosol aus dem Südlichen Ozean, den mittleren Breiten und den Subtropen der südlichen Hemisphäre in die Antarktis transportiert wird, wo es die Bildung und Entwicklung von Wolken und Niederschlag beeinflusst. Die Arbeiten konzentrieren sich auf (1) die Untersuchung des Ursprungs, der Häufigkeit und der Eigenschaften des Aerosols über der Station Neumayer III, (2) die Untersuchung des Einflusses von Oberflächen- und Grenzschicht-Kopplungseffekten auf die Eigenschaften und die Entwicklung von tiefen Wolken, (3) die Untersuchung des Beitrags von Dynamik (orographische Wellen), Aerosol und Meteorologie zur Verteilung der Eis- und Flüssigphase in Wolken über Neumayer III, (4) zur Untersuchung der vertikalen Struktur von Wolken und ihrer Beziehung zur Niederschlagsbildung und (5) zur Bewertung regionaler Kontraste in den Eigenschaften von Aerosolen und Wolken und den damit verbundenen Aerosol-Wolken-Wechselwirkungsprozessen, indem die Neumayer-III-Beobachtungen von vorhandenen Datensätzen aus Südchile, Zypern, Deutschland und der Arktis kontrastiert werden.

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Research group (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE)

River floods are extremely important to society because of their potential damage and fatalities. Floods are also very interesting research subjects because of the intriguing non-linear interactions and feedbacks involved, interesting issues of generalisation and the need for investigating them in an interdisciplinary way. Extreme floods are not very well understood to date but new, high resolution data and new concepts for quantifying interactions promise a major breakthrough of a body of research carried out in a coordinated way. The objective of this Research Unit is to understand in a coherent way the atmospheric, catchment and river system processes and their interactions leading to extreme river floods and how these evolve in space and time. An innovative and coherent concept has been adopted in order to maximise the potential of the cooperation between the research partners which consists of three layers of integration: research themes focusing on the science questions, subprojects revolving around specific research tasks, and a joint study object of extreme floods in Germany and Austria. Using scales as a binding element, the research plan is organised into the research themes of event processes, spatial (regional) variability, temporal (decadal) variability, and uncertainty and predictability. The members of the Research Unit have been selected to obtain a team of leading experts with expertise that is complementary in terms of processes, methods and regional knowledge. The cooperation and communication strategy will be implemented through themed cluster groups, combining several subprojects, regular meetings of the cluster groups, an annual project symposium and a private cloud facilitating data exchange on the joint study object. Equal opportunity policies will be adopted and female and early career scientists will be promoted in a major way. Overall, the outcomes of the Research Unit will constitute a step change in the understanding of the coupled system of flood processes in the atmosphere, catchments and rivers which will have major implications for a range of sciences and the society.

Bildung partikulärer organischer Masse in Wolken: Kammer- und Laborstudien, Mechanismen, Modellierung und Integration

Labor- und Feldstudien zeigen, dass chemische Prozesse in Wolken zur organischen Aerosolpartikelmasse beitragen. Aus der HCCT-2010-Feldstudie und der CUMULUS-Kammerstudie geht hervor, dass die organische Massenproduktion beträchtlich sein kann und diese von der Konzentration der organischen Vorläuferverbindungen in der Gasphase abhängt. Es bestehen jedoch große Unsicherheiten, bei der Art der resultierenden Aerosolpartikel, welche metastabil sein können und einen Teil ihrer organischen Masse während der Evaporation der Wolkentropfen wieder verlieren. Ziel des Projekts PARAMOUNT ist die Untersuchung der Chemie in Wolkentropfen, welche organische Wolkeninhaltsstoffe prozessiert und zur Bildung organischer Aerosolpartikelmasse beiträgt. PARAMOUNT ist auf die Untersuchung der Multiphasenchemie relevanter Vorläuferverbindungen wie polyfunktioneller Carbonyle und Säuren fokussiert. Mit diesen Verbindungen sollen kombinierte Labor- und CESAM-Kammerstudien zur Multiphasenchemie durchgeführt werden. Dabei sollen die Untersuchung der Reaktionskinetik und der Produktverteilung in der wässrigen Phase zur Reaktionsmechanismusformulierung als Grundlage dienen. Die CESAM-Experimente stehen im Mittelpunkt des PARAMOUNT-Projektes und konzentrieren sich hauptsächlich auf die Untersuchung der organischen Masseproduktion durch chemische Wolkenprozesse. Zur Untersuchung der organischen Massenproduktion unter variierenden Umweltbedingungen werden die CESAM Kammerstudien mit verschiedenen Anfangsbedingungen durchgeführt. Die organische Massenzunahme soll während der künstlichen Wolkenepisoden in der CESAM-Kammer mit neusten analytischen Methoden untersucht werden. Ferner sollen mögliche Anreicherungen von organischen Carbonylverbindungen, welche in Feldproben während der Wolkenfeldmesskampagne HCCT-2010 beobachtet wurden, eruiert werden. Zwei Aerosol-Massenspektrometer dienen der Online-Bestimmung der organischen Aerosolfraktion. Des Weiteren erfolgt die Analyse prozessierter interstitieller Gasphasenverbindungen und deren Partitionierungverhalten zwischen Gas- und Flüssigphase unter Verwendung eines PTR-MS und eines mini CVI (counter virtual impactor) in Kombination mit Offline-Analytik.Abschließend werden die CESAM-Experimente mit dem komplexen MCM / CAPRAM Multiphasenchemiemechanismus modelliert. Die verknüpfte Modellierung soll den auf den experimentellen Ergebnissen basierenden Mechanismus validieren und die Interpretation der Kammermessungen unterstützen. Insgesamt stellt das hier vorgeschlagene Projekt PARAMOUNT einen wissenschaftlichen Durchbruch für das Verständnis von chemischen Wolkenprozessen dar, sowie deren Bedeutung für die Produktion von sekundärem organischem Aerosol.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Variation der antarktischen Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Konzentrationen und Eigenschaften an NEumayer III im Vergleich zu deren Werten in der Arktis an der Forschungsstation Villum (VACCINE+)

Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten

Ziel des Vorhabens ist es, die solaren Einstrahlungsbedingungen in der Antarktis in Abhängigkeit der Wellenlänge zu untersuchen. Das Projekt soll ein verbessertes Verständnis der besonderen Strahlungsverhältnisse in polaren Regionen der Erde ermöglichen, um die Auswirkungen des zunehmenden Treibhauseffekts und des weiter voranschreitenden Ozonabbaus in Zukunft besser abschätzen zu können. Zur Charakterisierung der Einstrahlung soll ein Messsystem zur Erfassung der spektralen Strahlstärke wie auch der spektralen Bestrahlungsstärke zwischen 290-2500 nm bei verschiedenen Atmosphärenbedingungen konfiguriert werden. Ferner werden Strahldichten in Abhängigkeit des Einfallswinkels modelliert, wobei die bidirektionale Reflektionsfunktion des Untergrunds berücksichtigt werden soll. Die Modellrechnungen dienen der Vorbereitung weiterer Messkampagnen. Aufgrund der Vorerfahrungen in anderen Gebieten der Erde (u.a. in den Hochlagen der Alpen) ist damit zu rechnen, dass insbesondere Wolken und die hohe Schneealbedo in der Antarktis das Strahlungsfeld wesentlich modifizieren.

GTS Bulletin: FCSN32 ESSV - Forecast (details are described in the abstract)

The FCSN32 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FC): Aerodrome (VT < 12 hours) A1A2 (SN): Sweden (Remarks from Volume-C: NilReason)

Dreidimensionale globale Modellrechnung der troposphaerischen Luftchemie

Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.

Empfang und Auswertung hochaufloesender Satellitenbilder

Der eine Teil des Vorhabens befasst sich mit dem Entwurf und der Erstellung einer Empfangsanlage fuer Satellitensignale im Frequenzbereich um 1700 MHz und deren Wiedergabe als Bilder (2 Spektralbereiche sichtbar, Therm. Jr.) der andere Teil umfasst Untersuchungen ueber die Moeglichkeiten der Auswertung solcher Bilder mit Hilfe moderner Bildverarbeitungsmethoden, wobei im Mittelpunkt analog- und digitalelektronische Verfahren stehen. Der Schwerpunkt des Vorhabens liegt auf der Wolkenbildanalyse mit numerischen Methoden.

Hochaufgelöste numerische Untersuchungen des Turbulenzeffektes auf die Struktur von nächtlichen Strahlungsnebeln

Nebel als meteorologisches Phänomen kann große Auswirkungen für die Wirtschaft, aber auch auf die persönliche Sicherheit haben, indem er die Sichtweite in der atmosphärischen Grenzschicht reduziert. Wirtschaftliche Verluste für den Luft-, See-, und Landvekehr als Folge von Nebel sind dabei vergleichbar zu Verlusten durch Winterstürme. Trotz der Fülle an Literatur über Nebel bleibt unser Verständnis der physikalischen Prozesse die zu Nebelbildung und seiner Mikrophysik beitragen unvollständig. Dies ist dadurch begründet, dass mehrere komplexe Prozesse, wie z.B. Strahlungsabkühlung, turbulentes Durchmischen und die mikrophysikalischen Prozesse nichtlinear miteinander interagieren. Zusätzlich verkomplizieren Bodenheterogenitäten bezüglich Vegetation und Bodeneigenschaften die Vorhersagbarkeit von Nebel. Die Fähigkeit von numerischen Wettervorhersagemodellen Nebel vorherzusagen ist in Folge dessen noch dürftig. In diesem Projekt werden hochaufgelöste Grobstruktursimulationen (Large-Eddy Simulationen, LES) verwendet um den Effekt von Turbulenz auf nächtliche Strahlungsnebel zu untersuchen. Das LES Modell PALM wird dazu mit einer sehr hohen Auflösung von etwa 1 m verwendet. Dabei werden in den LES sowohl ein Euler'sches Bulk Wolkenphysikschema, als auch ein Lagrange'sches Partikelmodell, welches die explizite Behandlung von Aerosolen und Nebeltropfen erlaubt, verwendet. Dieser innovative Ansatz erlaubt die Nebeltropfen-Turbulenz-Interaktion zum ersten Mal mit LES zu untersuchen. Das Ziel dieser Studie ist es, einen umfassenden Überblick über die Schlüsselparameter zu erhalten, welche den Lebenszyklus sowie die dreidimensionale Makro- und Mikrostruktur von Strahlungsnebel bestimmen. Weiterhin wird der Effekt von nächtlichem Strahlungsnebel auf die morgendliche Übergangszeit und die Grenzschicht am Tag untersucht. Der Effekt von Bodenheterogenitäten auf nächtlichen Strahlungsnebel wird mit Hilfe von aufgeprägten regelmäßigen idealisierten und unregelmäßigen beobachteten Bodenheterogenitäten in den LES untersucht. Die LES Daten werden anhand von Messdaten der meteorologischen Messstandorte in Cabauw (Niederlande) und Lindenberg (Deutschland) validiert und mit Simulationsdaten des eindimensionalen Grenzschicht- und Nebelvorhersagemodells PAFOG (Universität Bonn) verglichen.

Modellierung von Wasser-Transportwegen und -Isotopen in der atmosphärischen Grenzschicht der Passatwindzone (MoWITrade)

Das Strahlungsbudget der Erde und die Sensitivität des Klimasystems gegenüber externen Antrieben werden stark durch den Wasserkreislauf und die Bildung von tiefliegenden Wolken in der marinen Grenzschicht der Passatwindzone beeinflusst. Die Darstellung dieser Prozesse in globalen Klimamodellen ist allerdings mit großen Unsicherheiten verbunden. Das Ziel dieses Projektes ist es, diese Unsicherheiten zu reduzieren und unser Verständnis von Wassertransport-Prozessen in der Passatwindzone zu verbessern. Dazu werden hoch entwickelte Transport-Diagnostiken in Klimasimulationen verwendet, die ein breites Spektrum an räumlichen Auflösungen abdecken (Gitterpunktsabstände von unter 1 km bis zu 100 km). Die Beiträge verschiedener Quellregionen und Transportwege zum Feuchtebudget in der marinen Grenzschicht werden mit Hilfe von numerischen Feuchte-Tracern quantifiziert. Diese passiven Tracer werden mit prognostischen Simulationen von Wasserisotopen kombiniert, um spezifische Fingerabdrücke der verschiedenen diagnostizierten Feuchte-Transportwege in der Isotopenzusammensetzung zu bestimmen. Schließlich wird die simulierte Isotopenzusammensetzung mit Messungen von der EUREC4A-Messkampagne im tropischen Nordatlantik verglichen. Auf diese Weise wird untersucht, inwiefern Beobachtungen von Wasserisotopen dazu dienen können, die simulierten Transportprozesse zu evaluieren. Durch diesen skalenübergreifenden Modellierungsansatz, in Kombination mit Beobachtungsdaten von der EUREC4A-Kampagne, werden wir in der Lage sein, die Darstellung des tropischen Wasserkreislaufs in Klimamodellen auf neuartige Art und Weise zu evaluieren und schlussendlich zu verbessern.

1 2 3 4 5135 136 137