Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.
Der Datensatz umfasst die Ergebnisdaten der Simulation des extremen Starkregenereignisses vom 29.05.2018 in Wuppertal, im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurden in der Simulation die während des extremen Starkregenereignisses vom 29.05.2018 gemessenen Regenmengen verwendet, die ungleichmäßig über das Stadtgebiet verteilt waren, also ein sogenannter Naturregen. Im Zentrum des Unwetters hatte das Regenereignis eine Stärke bis zu Starkregenindex 11 (SRI 11). Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 10 (SRI 10), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein extremes Starkregenereignis mit einer Dauer von 1 Stunde und einer Niederschlagsmenge von 90 l/m² in ganz Wuppertal angenommen. Für ein solches Regenereignis kann auf der Grundlage der seit 1960 vorliegenden Regenaufzeichnungen keine statistische Wiederkehrzeit bestimmt werden. Der zeitliche Verlauf des Regenereignisses wurde als Blockregen mit konstanter Intensität modelliert. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 6 (SRI 6), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 38,5 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 50-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz umfasst die Ergebnisdaten der Simulation eines synthetischen Starkregenereignisses mit dem Starkregenindex 7 (SRI 7), im Oktober 2022 ausgeführt durch die Dr. Pecher AG (Erkrath) im Auftrag der Stadt Wuppertal, beauftragt über die Wuppertaler Stadtwerke WSW Energie und Wasser AG. Der Datensatz ist Teil von Version 2.1 der Starkregensimulationen, die die Dr. Pecher AG seit 2018 in unregelmäßigen Abständen für die Stadt Wuppertal berechnet. Die Simulationsansätze werden mit jeder neuen Version verfeinert. Außerdem werden die zum jeweiligen Berechnungszeitpunkt erkannten Fehler, insbesondere im verwendeten Geländemodell, korrigiert. Die Simulation berücksichtigt den Regenwasserabfluss im Kanalnetz und durch Überstau aus dem Kanalnetz austretendes Wasser mit einem vereinfachten Modellansatz, ebenso die verschiedenen Abflussgeschwindigkeiten auf Oberflächen mit unterschiedlicher Rauheit. Ab Version 2.1 wird ein moderater Versickerungsansatz in der Simulation berücksichtigt. Zusätzlich wird die Wupper mit einem unendlichen Fassungsvermögen für das zufließende Regenwasser modelliert. Es kann in den Simulationen damit nicht mehr zu einem Rückstau kommen, bei dem das Regenwasser Flächen in der Talsohle überflutet, weil es von der Wupper nicht mehr abgeleitet werden kann. Wichtiger Hinweis: Die Simulationsergebnisse sind beim aktuellen Stand der Technik keine exakten Vorhersagen des Verlaufs zukünftiger Ereignisse. Sie enthalten noch nicht erkannte Modellfehler und vernachlässigen einige Wirkungszusammenhänge, zu denen keine auskömmlichen Daten vorliegen, z. B. den Wasserrückhalt durch die Überflutung von Kellergeschossen. Die Ergebnisse haben daher eine Tendenz zur lokalen Überzeichnung der Wassertiefen, die sich bei einem realen Regen der angenommenen Stärke einstellen würden. Die Simulationsergebnisse eignen sich aber gut zur Identifikation und Lokalisierung der Gefährdungen durch Starkregen, z. B. mit Hilfe der von der Stadt Wuppertal und den Wuppertaler Stadtwerken publizierten interaktiven Starkregengefahrenkarte. Als Niederschlag wurde in der Simulation ein außergewöhnliches Starkregenereignis mit einer Dauer von 2 Stunden und einer Niederschlagsmenge von 42 l/m² in ganz Wuppertal angenommen. Ein solches Regenereignis besitzt eine 100-jährliche statistische Wiederkehrzeit. Der zeitliche Verlauf des Regenereignisses wurde als Eulerregen Typ II modelliert. Hierbei werden in 5-Minuten-Abschnitten unterschiedliche Intensitäten angenommen, die bis zur maximalen Intensität schnell und gleichmäßig ansteigen, dann stark abfallen und danach allmählich abklingen. Als Ergebnisse werden drei TIFF- Dateien mit einer Auflösung von 1 m (quadratische Pixel, deren Kantenlänge 1 m in der Realwelt entspricht) und Georeferenzierung über TIFF World Files unter einer Open-Data-Lizenz (CC BY 4.0) angeboten. Die Pixelwerte in den drei Dateien geben die maximale Wassertiefe, die maximale Fließgeschwindigkeit und die Richtung der maximalen Fließgeschwindigkeit an, die für die jeweilige Rasterzelle im Verlauf der Simulation berechnet werden.
Der Datensatz "10m-Höhenlinien Wuppertal 2020" enthält Höhenlinien mit einer Äquidistanz von 10 m für das gesamte Stadtgebiet von Wuppertal. Es werden 5 verschiedene Ausprägungen bezüglich Datenformat und Koordinatensystem vorgehalten. Der Datensatz basiert auf dem von Geobasis NRW bereitgestellten Digitalen Geländemodell DGM1 mit dem überwiegenden Datenstand 2020 (Stand 2019 in einigen nördlichen und nordöstlichen Randbereichen des Wuppertaler Stadtgebietes). Das DGM1 ist ein durch flugzeuggestütztes Laserscanning (Lidar) erzeugtes regelmäßiges Punktgitter mit einer Maschenweite von 1 m und einer Höhengenauigkeit eines Einzelpunktes von +/- 2 dm. Die Höhenlinien wurden mit ArcGIS und der Erweiterung ArcGIS Spatial Analyst durch Interpolation im DGM1 ohne Berücksichtigung von zusätzlichen Geländebruchkanten erzeugt. Über das Standardverhalten des im Spatial Analyst verfügbaren Werkzeugs "Oberfläche - Konturlinie" hinaus erfolgte keine explizite weitere Glättung des Krümmungsverlaufes der Höhenlinien. Der Datensatz wird nicht fortgeführt. Nach einer Aktualisierung des DGM1 werden die Höhenlinien Wuppertal unter anderen Produktbezeichnungen neu abgeleitet. Der Datensatz ist unter einer Open-Data-Lizenz (CC BY 4.0) verfügbar.
Der Datensatz "20m-Höhenlinien Wuppertal 2020" enthält Höhenlinien mit einer Äquidistanz von 20 m für das gesamte Stadtgebiet von Wuppertal. Es werden 5 verschiedene Ausprägungen bezüglich Datenformat und Koordinatensystem vorgehalten. Der Datensatz basiert auf dem von Geobasis NRW bereitgestellten Digitalen Geländemodell DGM1 mit dem überwiegenden Datenstand 2020 (Stand 2019 in einigen nördlichen und nordöstlichen Randbereichen des Wuppertaler Stadtgebietes). Das DGM1 ist ein durch flugzeuggestütztes Laserscanning (Lidar) erzeugtes regelmäßiges Punktgitter mit einer Maschenweite von 1 m und einer Höhengenauigkeit eines Einzelpunktes von +/- 2 dm. Die Höhenlinien wurden mit ArcGIS und der Erweiterung ArcGIS Spatial Analyst durch Interpolation im DGM1 ohne Berücksichtigung von zusätzlichen Geländebruchkanten erzeugt. Über das Standardverhalten des im Spatial Analyst verfügbaren Werkzeugs "Oberfläche - Konturlinie" hinaus erfolgte keine explizite weitere Glättung des Krümmungsverlaufes der Höhenlinien. Der Datensatz wird nicht fortgeführt. Nach einer Aktualisierung des DGM1 werden die Höhenlinien Wuppertal unter anderen Produktbezeichnungen neu abgeleitet. Der Datensatz ist unter einer Open-Data-Lizenz (CC BY 4.0) verfügbar.
Der Datensatz "100m-Höhenlinien Wuppertal 2020" enthält Höhenlinien mit einer Äquidistanz von 100 m für das gesamte Stadtgebiet von Wuppertal. Es werden 5 verschiedene Ausprägungen bezüglich Datenformat und Koordinatensystem vorgehalten. Der Datensatz basiert auf dem von Geobasis NRW bereitgestellten Digitalen Geländemodell DGM1 mit dem überwiegenden Datenstand 2020 (Stand 2019 in einigen nördlichen und nordöstlichen Randbereichen des Wuppertaler Stadtgebietes). Das DGM1 ist ein durch flugzeuggestütztes Laserscanning (Lidar) erzeugtes regelmäßiges Punktgitter mit einer Maschenweite von 1 m und einer Höhengenauigkeit eines Einzelpunktes von +/- 2 dm. Die Höhenlinien wurden mit ArcGIS und der Erweiterung ArcGIS Spatial Analyst durch Interpolation im DGM1 ohne Berücksichtigung von zusätzlichen Geländebruchkanten erzeugt. Über das Standardverhalten des im Spatial Analyst verfügbaren Werkzeugs "Oberfläche - Konturlinie" hinaus erfolgte keine explizite weitere Glättung des Krümmungsverlaufes der Höhenlinien. Der Datensatz wird nicht fortgeführt. Nach einer Aktualisierung des DGM1 werden die Höhenlinien Wuppertal unter anderen Produktbezeichnungen neu abgeleitet. Der Datensatz ist unter einer Open-Data-Lizenz (CC BY 4.0) verfügbar.
Der Datensatz "1m-Höhenlinien Wuppertal 2020" enthält Höhenlinien mit einer Äquidistanz von 1 m für das gesamte Stadtgebiet von Wuppertal. Es werden 5 verschiedene Ausprägungen bezüglich Datenformat und Koordinatensystem vorgehalten. Der Datensatz basiert auf dem von Geobasis NRW bereitgestellten Digitalen Geländemodell DGM1 mit dem überwiegenden Datenstand 2020 (Stand 2020 in einigen nördlichen und nordöstlichen Randbereichen des Wuppertaler Stadtgebietes). Das DGM1 ist ein durch flugzeuggestütztes Laserscanning (Lidar) erzeugtes regelmäßiges Punktgitter mit einer Maschenweite von 1 m und einer Höhengenauigkeit eines Einzelpunktes von +/- 2 dm. Die Höhenlinien wurden mit ArcGIS und der Erweiterung ArcGIS Spatial Analyst durch Interpolation im DGM1 ohne Berücksichtigung von zusätzlichen Geländebruchkanten erzeugt. Über das Standardverhalten des im Spatial Analyst verfügbaren Werkzeugs "Oberfläche - Konturlinie" hinaus erfolgte keine explizite weitere Glättung des Krümmungsverlaufes der Höhenlinien. Der Datensatz wird nicht fortgeführt. Nach einer Aktualisierung des DGM1 werden die Höhenlinien Wuppertal unter anderen Produktbezeichnungen neu abgeleitet. Der Datensatz ist unter einer Open-Data-Lizenz (CC BY 4.0) verfügbar.
Der Datensatz "5m-Höhenlinien Wuppertal 2020" enthält Höhenlinien mit einer Äquidistanz von 5 m für das gesamte Stadtgebiet von Wuppertal. Es werden 5 verschiedene Ausprägungen bezüglich Datenformat und Koordinatensystem vorgehalten. Der Datensatz basiert auf dem von Geobasis NRW bereitgestellten Digitalen Geländemodell DGM1 mit dem überwiegenden Datenstand 2015 (Stand 2019 in einigen nördlichen und nordöstlichen Randbereichen des Wuppertaler Stadtgebietes). Das DGM1 ist ein durch flugzeuggestütztes Laserscanning (Lidar) erzeugtes regelmäßiges Punktgitter mit einer Maschenweite von 1 m und einer Höhengenauigkeit eines Einzelpunktes von +/- 2 dm. Die Höhenlinien wurden mit ArcGIS und der Erweiterung ArcGIS Spatial Analyst durch Interpolation im DGM1 ohne Berücksichtigung von zusätzlichen Geländebruchkanten erzeugt. Über das Standardverhalten des im Spatial Analyst verfügbaren Werkzeugs "Oberfläche - Konturlinie" hinaus erfolgte keine explizite weitere Glättung des Krümmungsverlaufes der Höhenlinien. Der Datensatz wird nicht fortgeführt. Nach einer Aktualisierung des DGM1 werden die Höhenlinien Wuppertal unter anderen Produktbezeichnungen neu abgeleitet. Der Datensatz ist unter einer Open-Data-Lizenz (CC BY 4.0) verfügbar.
Origin | Count |
---|---|
Bund | 639 |
Europa | 1 |
Kommune | 152 |
Land | 210 |
Wirtschaft | 13 |
Zivilgesellschaft | 6 |
Type | Count |
---|---|
Chemische Verbindung | 13 |
Daten und Messstellen | 25 |
Ereignis | 13 |
Förderprogramm | 393 |
Lehrmaterial | 1 |
Text | 132 |
Umweltprüfung | 28 |
unbekannt | 168 |
License | Count |
---|---|
geschlossen | 170 |
offen | 554 |
unbekannt | 23 |
Language | Count |
---|---|
Deutsch | 736 |
Englisch | 260 |
Resource type | Count |
---|---|
Archiv | 139 |
Bild | 1 |
Datei | 78 |
Dokument | 66 |
Keine | 324 |
Unbekannt | 1 |
Webdienst | 42 |
Webseite | 362 |
Topic | Count |
---|---|
Boden | 480 |
Lebewesen und Lebensräume | 543 |
Luft | 413 |
Mensch und Umwelt | 745 |
Wasser | 338 |
Weitere | 747 |