Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung Der Vertrag über das umfassende Verbot von Nuklearversuchen ( CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Der CTBT wurde 1996 zur Unterzeichnung ausgelegt. Von den 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft treten kann, fehlen bis heute drei Länder, die den Vertrag noch unterzeichnen und ratifizieren müssen. Mit der De-Ratifizierung des Vertrages durch Russland Ende 2023 sind es nunmehr sechs Länder, die den Kernwaffenteststopp-Vertrag zwar unterschrieben, jedoch nicht ratifiziert haben. Die Organisation zur Überwachung des Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrags mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das BfS beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Der umfassende Kernwaffenteststopp-Vertrag ( engl. Comprehensive Nuclear-Test-Ban Treaty , CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Obwohl er noch nicht in Kraft getreten ist, wird seit über 2 Jahrzehnten ein weltweites Messnetz zu Überwachung des Teststopps aufgebaut und erfolgreich betrieben. Der Kernwaffenteststopp-Vertrag Überwachung des Kernwaffenteststopp-Vertrags Der Kernwaffenteststopp-Vertrag Anzahl der weltweit durchgeführten Kernwaffen-Versuche bis 2022. Seit 2017 wurden keine Kernwaffenversuche mehr durchgeführt. Beginn der Kernwaffentests Mit dem sogenannten "Trinity"-Test am 16. Juli 1945 in den USA wurde zum ersten Mal in der Menschheitsgeschichte eine Nuklearwaffe gezündet. Einen Monat später erfolgte der erste militärische Einsatz durch die Abwürfe der Nuklearwaffen über Hiroshima und Nagasaki am Ende des zweiten Weltkrieges. Trotz früher Überlegungen zu einer internationalen Kontrolle von spaltbarem Material für den Bau von Kernwaffen erlangten weitere Nationen die Fähigkeit zur Herstellung dieser Waffen (Sowjetunion: 1949, Vereinigtes Königreich: 1952). In den 1950er Jahren begannen die USA und die Sowjetunion mit dem Testen sogenannter thermonuklearer Waffen (umgangssprachlich "Wasserstoffbomben"), die eine höhere Sprengkraft besitzen und entsprechend größere Mengen an radioaktivem Fallout produzieren. Partieller Teststopp-Vertrag Unter anderem führte die Kritik an diesen Tests dazu, dass sich 1963 die USA , die Sowjetunion und das Vereinigte Königreich über ein Verbot von Tests in der Atmosphäre, unter Wasser und im Weltraum verständigten. Dies wurde in einem internationalen Vertrag, dem partiellen Teststopp-Vertrag niedergelegt ( engl. Partial Nuclear Test-Ban Treaty , PTBT). Frankreich (erster Test 1960) und China (erster Test 1964) unterschrieben diesen Vertrag jedoch nicht und führten noch bis 1980 Kernwaffentests in der Atmosphäre durch. Vom partiellen zum umfassenden Teststopp Das Internationale Messnetz IMS Quelle: CTBTO https://www.ctbto.org/map/ Die Unterzeichnerstaaten des PTBT hielten sich an die Vertragsregeln, wodurch die Zahl der atmosphärischen (oberirdischen) Tests, und der damit verbundene radioaktive Fallout verringert werden konnte. Die Gesamtzahl aller Atomwaffen-Tests verringerte sich jedoch nicht, sie wurden jetzt nur mehrheitlich unter der Erdoberfläche durchgeführt. Bis heute wurden über 2.000 Kernwaffentests gezählt. Auf diplomatischer Ebene wurde nach dem Inkrafttreten des PTBT über einen umfassenden Teststopp-Vertrag diskutiert und 1976 die sogenannte " Group of Scientific Experts " (GSE) eingerichtet. Ihre Aufgabe war es zu klären, ob und wie die Einhaltung eines solchen Vertrags geprüft werden kann, denn ein verlässliches Verifikationssystem ist eine entscheidende Voraussetzung dafür, dass sich Staaten völkerrechtlich an ein Verbot binden. Über die Möglichkeiten und Grenzen der Verifikation (wissenschaftliche Nachweisführung) liefen die Meinungen zunächst weit auseinander. Umfassender Kernwaffenteststopp-Vertrag Es dauerte bis zum Ende des Kalten Krieges, bis formelle Verhandlungen bei den Vereinten Nationen in der Genfer Abrüstungskonferenz aufgenommen wurde. Die Beratungen, an denen auch Experten des BfS maßgeblich beteiligt waren, konnten bereits zwei Jahre später abgeschlossen und der umfassende Kernwaffenteststopp-Vertrag (Comprehensive Nuclear-Test-Ban Treaty, CTBT ) 1996 zur Unterzeichnung ausgelegt werden. Die Verhandlungsparteien wollten sicherstellen, dass die Unterzeichner des Vertrags erst dann bindende Verpflichtungen eingehen, wenn alle Staaten mit nukleartechnischen Einrichtungen – und damit der theoretischen Fähigkeit zum Kernwaffenbau - beigetreten sind. Daher enthält das Dokument eine Liste mit 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft tritt. Bis heute fehlen von diesen 44 Staaten drei, die den Vertrag vor Inkrafttreten unterzeichnen und ratifizieren müssen (Indien, Nordkorea, Pakistan) sowie seit 2023, mit der De-Ratifizierung des Vertrages in Russland, sechs Länder, die den Vertrag zwar unterschrieben, jedoch noch nicht ratifiziert haben (Ägypten, China, Iran, Israel, USA, Russland). Umsetzung des Kernwaffenteststopp-Vertrags Wenn der Zeitpunkt des Inkrafttretens erreicht wird, muss die Verifikation des Verbots sofort möglich sein. Daher wurde in Wien die sogenannte Vorbereitende Kommission für den CTBT gegründet, deren Aufgabe insbesondere der Aufbau eines internationalen Monitoring-Netzwerks mit 337 Messstationen ist. Mit Hilfe dieses Messnetzes kann die Vertragseinhaltung verlässlich überwacht werden. Daneben bereitet die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) Vor-Ort-Inspektionen konzeptionell vor, entwickelt dafür Messmethoden und führt Übungen durch. Überwachung des Kernwaffenteststopp-Vertrags Die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrages mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Das Bundesamt für Strahlenschutz ( BfS ) beteiligt sich mit Messungen radiaktiver Stoffe in der Atmosphäre an der Kontrolle und unterstützt das Auswärtige Amt durch fachliche Auswertung und Bewertung der Daten. Überwachung des Internationalen Kernwaffenteststopp-Vertrags Die CTBTO ist als internationales Netzwerk darauf ausgerichtet, weltweit geheime Kernwaffentests aufzuspüren. Seismische Messungen können einen ersten Hinweis auf einen unterirdischen Atomwaffentest geben. Mit einer zeitlichen Verzögerung können bei einem Atomwaffentest entstehende radioaktive Edelgase durch das Erdreich in die Atmosphäre gelangen. Wenn dies geschieht, lassen sich diese Gase mit den hoch empfindlichen Radioaktivitätsmessstationen der CTBTO nachweisen und auf einen Atomwaffentest zurückführen. Mehrere Dutzend dieser untereinander vernetzten Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das Bundesamt für Strahlenschutz betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Weltweites Überwachungssystem Die Vertragsorganisation mit Sitz in Wien baut zurzeit mit Hilfe der Signatarstaaten ein weltweites Überwachungssystem mit einem Netz von 321 Messstationen und 16 Laboren auf. Es ist in der Lage, eine nukleare Explosion an jedem Ort der Erde mit hoher Wahrscheinlichkeit zu entdecken, zu identifizieren und auch zu lokalisieren. Dieses System beruht auf 170 Seismographen in der Erde, 11 Unterwassermikrophonen in den Ozeanen, 60 Infraschallmikrophonen in der Atmosphäre und 80 Spurenmessstationen für Radioaktivität in der Luft Eine dieser Spurenmessstationen ist die Station Schauinsland des BfS (Radionuklidstation RN33). Zur Qualitätssicherung werden die 80 Radionuklidstationen durch 16 Radionuklidlaboratorien ergänzt. Die Bedeutung von Radioaktivitätsmessungen Die drei geophysikalischen Techniken - Seismik , Infraschall und Hydroakustik - können zeitnah Explosionen mit einer Stärke über 1 Kilotonne Trinitrotoluol (TNT) Äquivalent (Maßeinheit für die bei einer Explosion freiwerdende Energie) registrieren und lokalisieren. Die Radionuklid -Messtechnik hat anschließend die Aufgabe, den nuklearen Charakter einer Explosion zweifelsfrei nachzuweisen. Detoniert ein nuklearer Sprengkörper, dann entsteht eine Vielzahl radioaktiver Spaltprodukte . Die meisten so gebildeten Radionuklide kommen in der Natur nicht vor und unterscheiden sich auch deutlich in ihrer Zusammensetzung von Radioaktivität aus Kernkraftwerken. Eine Eingrenzung von Freisetzungsort und Freisetzungszeit ist zusätzlich mit Hilfe von atmosphärischen Ausbreitungsrechnungen möglich. Was wird gemessen? An allen im Endausbau des Messnetzes vorgesehenen 80 Radionuklidmessstationen wird die Luft auf Spuren von an Luftstaub gebundenen Gammastrahlern untersucht. An 40 der 80 Stationen, darunter auch auf der Station Schauinsland, wird zusätzlich nach radioaktiven Isotopen des Edelgases Xenon (Xenon-131m, Xenon-133, Xenon-133m und Xenon-135) gefahndet. Mindestanforderungen an die technische Ausstattung der Messstationen Aerosole Edelgase (radioaktives Xenon) Messtechnik Reinstgermaniumdetektor Reinstgermaniumdetektor oder Beta-/Gamma-Koinzidenz Luftdurchsatz mindestens 500 Kubikmeter pro Stunde mindestens 0,4 Kubikmeter pro Stunde Nachweisgrenze 10 bis 30 Microbecquerel pro Kubikmeter Luft bezogen auf Barium-140 1 Millibecquerel pro Kubikmeter Luft bezogen auf Xenon-133 Radioaktive Edelgase wurden in das Messnetz einbezogen, weil diese auch bei unterirdischen und verdeckten Kernwaffentests in die Atmosphäre entweichen können und damit das Risiko für einen potentiellen Vertragsbrecher erhöhen, entdeckt zu werden. Wichtig ist hierbei, dass anhand der isotopenspezifischen Messungen zwischen Radioaktivität aus zivilen Quellen und aus eventuellen Kernwaffentests - die eine Vertragsverletzung darstellen würden - unterschieden werden kann. Auswertung der Daten Sämtliche Messdaten werden über VPN oder ein satellitengestütztes Kommunikationssystem an das Internationale Datenzentrum ( IDC ) der CTBTO in Wien übermittelt. Dort werden sie ausgewertet, an die Unterzeichnerstaaten verteilt und archiviert. Stand: 04.08.2025
Der effiziente Umgang mit Ressourcen und Energie ist eine essenziele Größe zum Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebs- und Vakuumtechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Des Weiteren besteht in der Automatisierungsindustrie ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebs- und Vakuumtechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. Begleitend zur Entwicklung der Methodik zur Anlagenüberwachung wird bei XENON ein Labordemonstrator mit elektrischen und pneum. Antriebsanwendungen entstehen. Die Abstraktion von Anlagenkomponenten erlaubt es, die Überwachungs- und Adaptionsverfahren ohne Auswirkungen auf reale Produktionsprozesse zu validieren und gezielt Betriebs-, Degradations- und Fehlerzustände zu erzeugen, um deren Detektierbarkeit mit unterschiedlicher Sensorik zu testen. Die Anlage dient zudem der Erprobung von Adaptionsregelungen von Prozessen. Aufgrund der Ergebnisse soll eine effiziente und ökologische Auslegungsstrategie für Antriebslösungen erarbeitet werden.
Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. In diesem Zusammenhang wurden Leitstellen eingerichtet, die jeweils für die Überwachung bestimmter Umweltbereiche verantwortlich sind. Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz bzw. der IMIS -Zuständigkeitsverordnung, der Allgemeinen Verwaltungsvorschrift zum Integrierten Mess- und Informationssystem zur Überwachung radioaktiver Stoffe in der Umwelt ( AVV - IMIS ) und in der Strahlenschutzverordnung festgeschrieben. Der radioaktive Fallout durch die atmosphärischen Kernwaffenversuche in den 1950er und 1960er Jahren machte eine Überwachung der Belastung von Mensch und Umwelt durch Radioaktivität erforderlich. Wegen der Verpflichtungen durch den Artikel 35 des EURATOM -Vertrages von 1957 und der großtechnischen Nutzung der Kernenergie zur Energieproduktion wurde die Überwachung ausgeweitet und gesetzlich geregelt. Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. Leitstellen: Einrichtungen des Bundes Gleichzeitig mit der amtlichen Überwachung wurden Leitstellen eingerichtet, die für bestimmte Umweltbereiche verantwortlich sind. Diese Leitstellen sind eingerichtet beim Bundesamt für Strahlenschutz , beim Deutschen Wetterdienst, bei der Bundesanstalt für Gewässerkunde, beim Max-Rubner-Institut, beim Bundesamt für Schifffahrt und Hydrographie, beim Thünen-Institut. Die Aufgaben Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz ( StrlSchG ) mit der IMIS -Zuständigkeitsverordnung ( IMIS -ZustV) und in der Strahlenschutzverordnung ( StrlSchV ) festgeschrieben. Dies sind unter anderem: Überprüfung der Messdaten, die im Rahmen der Umweltüberwachung ( AVV - IMIS ) nach StrlSchG sowie im Rahmen der Emissions- und Immissionsüberwachung ( REI ) nach StrlSchV erhoben werden (Datenerzeuger sind unter anderem die amtlichen Messstellen der Länder, Bundesinstitute sowie die unabhängigen Messstellen zur Überwachung kerntechnischer Einrichtungen und die Betreiber kerntechnischer Einrichtungen), Zusammenfassung und Dokumentation der Daten der Umweltüberwachung nach StrlSchG sowie der Emissions- und Immissionsüberwachung, Überprüfung, Weiterentwicklung und Dokumentation von Probenahme- und Analyseverfahren (Messanleitungen) , Vergleichsanalysen zur externen Qualitätskontrolle (Ringversuche, Messvergleiche), Beratung der zuständigen Ministerien des Bundes und der Länder in fachlichen Fragen. Das BfS nimmt die Funktion einer Leitstelle in folgenden Bereichen wahr: Die Leitstellen des BfS Leitstelle Gesetzliche Grundlage Bemerkungen Leitstelle für Bodenoberflächen (In-situ-Gammaspektrometrie), Ortsdosis und Ortsdosisleistung ( ODL ) StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI ODL -Messnetz Leitstelle für Spurenanalyse StrlSchG , IMIS -ZustV, AVV - IMIS Spurenanalyse von radioaktiven Edelgasen (Krypton, Xenon) und luftstaubgebundenen Radionukliden Leitstelle für Trinkwasser, Grundwasser, Abwasser, Klärschlamm, Abfälle und Abwasser aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände StrlSchG , IMIS -ZustV Leitstelle für Fortluft aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, REI Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM) StrlSchG , IMIS -ZustV, StrlSchV Natürliche Radioaktivität in Umweltmedien, wie zum Beispiel Böden, Baustoffen sowie in industriellen Rückständen (zum Beispiel bei der Gewinnung von Erdgas) Qualitätssicherung von Messergebnissen durch die Leitstellen Die Leitstellen prüfen die Messergebnisse auf ihre Plausibilität und übernehmen die Qualitätssicherung der Daten. Korrekte Messergebnisse sind eine maßgebliche Voraussetzung, um in einem nuklearen Ereignisfall mögliche radiologische Auswirkungen richtig einschätzen zu können und die richtigen Maßnahmen zum Schutz der Bevölkerung zu treffen. Die Leitstellen entwickeln die anzuwendenden Probenahme- und Analyseverfahren, prüfen die Messdaten auf Plausibilität, führen Maßnahmen zur Qualitätssicherung durch, bereiten die verfügbaren Daten auf und erstatten Bericht an entscheidungsbefugte Stellen. Ringversuche und Laborvergleichsanalysen und -messungen als externe Qualitätskontrolle Die Leitstellen organisieren regelmäßig Ringversuche bzw. Laborvergleichsuntersuchungen zur externen Qualitätskontrolle. Dazu versendet die verantwortliche Leitstelle standardisierte Proben mit bekannter Zusammensetzung an die teilnehmenden Institutionen. Die Proben werden von den Teilnehmern mit den von ihnen üblicherweise verwendeten Verfahren analysiert. Ergebnisse: Vergleich liefert Informationen über Qualität von Analyse- und Auswertungsmethoden In Fachgesprächen und Workshops werden die angewendeten Methoden und Verfahren sowie die Ergebnisse von Ringversuchen bzw. Laborvergleichsanalysen und -messungen mit den Teilnehmern diskutiert. Im Bedarfsfall unterstützt die jeweilige Leitstelle teilnehmende Institutionen bei der Einführung neuer Mess- oder Analyseverfahren. Internationale Zusammenarbeit Die Mitwirkung der Leitstellen des BfS in internationalen Arbeitsgruppen dient dem Erfahrungsaustausch, der Harmonisierung von Analyse- und Messverfahren im internationalen Rahmen, der Qualitätssicherung der verfügbaren Daten. Die internationale Zusammenarbeit beim Fukushima-Unfall hat gezeigt, wie wichtig qualitätsgesicherte Daten auch auf internationaler Ebene sind. Durch das internationale Messnetz der CTBTO konnte sowohl die Ausbreitung der freigesetzten Radioaktivität als auch ihre Abschwächung bei der Verteilung in der Atmosphäre genau beobachtet werden. Die Entscheider erhielten so frühzeitig zutreffende Prognosen auf zu erwartende radiologische Auswirkungen im jeweiligen Land – eine wichtige Voraussetzung, um über mögliche nationale Schutzmaßnahmen zu entscheiden. Stand: 05.08.2025
Internationale Messnetze Die Staaten der Europäischen Union haben sich zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet. Auf internationaler Ebene betreibt die Organisation zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags ( CTBTO ) ein globales Messnetz. Innerhalb der Europäischen Union ( EU ) haben sich die Mitgliedstaaten zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet. Auf internationaler Ebene liefert auch das Messnetz zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags weltweit Daten zur Radioaktivität in der Umwelt. Messnetze auf europäischer Ebene Alle Mitgliedstaaten der Europäischen Union haben sich zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet und betreiben ähnliche Messnetze wie das Bundesamt für Strahlenschutz ( BfS ). Österreich und die Schweiz verfügen über ein vergleichsweise engmaschiges Netz zur Messung der Ortsdosisleistung ( ODL ) wie Deutschland. In anderen Staaten liegt der Schwerpunkt auf der Überwachung kerntechnischer Anlagen, das heißt, die Messstationen sind vor allem in der Nähe dieser Anlagen platziert. Die Messstation auf dem Schauinsland ist einer der vier deutschen Standorte des weitmaschigen Netzwerks zur Überwachung der Umweltradioaktivität in der EU ("Dense and Sparse Network"). Nach Artikel 35 des EURATOM -Vertrags werden die erhobenen Daten der Ortsdosisleistung und Aktivitätskonzentrationen im Luftstaub gegenüber der EU berichtet. Die Messwerte der Mitgliedsstaaten für die Ortsdosisleistung als auch für weitere Umweltmedien werden vom Joint Research Centre (JRC) der EU zusammengefasst und veröffentlicht. Das BfS arbeitet mit dem JRC zusammen und führt an der Station Schauinsland mit dem Projekt INTERCAL ein langfristiges Vergleichsexperiment mit Strahlungsdetektoren in- und ausländischer Messnetze durch. Das weltweite Messnetz des CTBT Die Organisation zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags ( CTBTO ) betreibt ein globales Messnetz (International Monitoring System, IMS). Die Messstation Schauinsland ist eine von gegenwärtig 73 zertifizierten Stationen, die partikelgebundene Radioaktivität im Bereich weniger Mikrobecquerel pro Kubikmeter Luft nachweisen können. Außerdem ist die Station eine von nur 26 zertifizierten Stationen weltweit, die radioaktives Xenon im Bereich unter einem Millibecquerel pro Kubikmeter Luft nachweisen können. Das BfS unterstützt die CTBTO seit den neunziger Jahren und hat zuletzt 2021/22 an der Messstation Schauinsland ein neues, hochmodernes Edelgas-Messsystem für das IMS der CTBTO getestet. Dieses ist mittlerweile zertifiziert und kommt im IMS zum Einsatz. Das Edelgaslabor des BfS in Freiburg ist auf die Messung von radioaktivem Krypton und radioaktivem Xenon in der Atmosphäre spezialisiert und misst lang- und kurzfristige Änderungen der Aktivitätskonzentrationen in der Luft. Über atmosphärische Rückwärtsrechnungen wird versucht, Quellort und Quellstärke freigesetzter Radioaktivität zu bestimmen. Im Laufe der letzten Jahrzehnte wurden Proben aus allen Kontinenten einschließlich der Antarktis untersucht. Stand: 09.07.2025