Das Projekt "Biogenic formation of non-extractable residues from pesticides in soil" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie.During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.
Das Projekt "Trusted Blockchains für das offene, intelligente Energienetz der Zukunft, Teilvorhaben: Hardwaresicherheitsmodul für Blockchain-Technologie in SMGWs für das offene, intelligente Energienetz der Zukunft" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Infineon Technologies AG.
Das Projekt "ATMOCHEM - Integrated analysis of long-range pollution transport to mid- and high-latitudes over Europe using model simulations, satellite observations, and aircraft measurements (INTAS)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik.In this project, satellite observations of nitrogen dioxide in the atmosphere have been used to investigate the occurrence of long range transport of pollution over the oceans. Such export of pollution is important as it affects air quality in clean regions, changes background levels of pollutants in large parts of the world and is relevant for international conventions such as LRTAP. Nitrogen dioxide is a tracer of pollution which is mainly produced in the combustion of fossil fuels but also by biomass burning and lightning. As the atmospheric lifetime of NO2 is short, long range transport is only possible at high wind speed, preferably at low solar irradiation (mid and high latitudes in fall and winter). In standard satellite products of tropospheric NO2 there is little evidence for long range transport. This is due to the fact that such transport is often linked to the presence of clouds, and cloudy data is usually excluded from the satellite data sets as in such cases, the instrument does not have an unobstructed view to the surface where most of the pollution is located. Therefore, in this study all NO2 data from the European GOME-2 satellite instrument have been used and a simplified treatment of the effect of clouds on the detection sensitivity has been developed. It assumes that in long range transport events in the presence of clouds, the NO2 is well mixed within the cloud. This assumption is supported by some case studies on CO measurements in the atmosphere and NO2 data from atmospheric models. Using measurements from several days, long range transport events can be identified in the satellite data using image processing techniques and the assumptions that a) NO2 plumes from transport are short lived and can therefore be identified by evaluating deviations from the mean values and b) that they are contiguous in space and c) that they can be traced back to regions with elevated NO2 values. An algorithm based on these principles has been developed and implemented, and a multi-annual data set of GOME-2 measurements has been evaluated, identifying nearly 4000 individual NO2 transport events over oceans. Using this data set, a statistical evaluation of NO2 long range transport events could be performed. The results show, that the main regions affected by NO2 from long range transport are between the US and Europe, in the outflow of China and East of South America and South Africa. In all regions, most events are observed in fall and winter. For Europe and China, mainly short lived events are observed as NO2 plumes are often rapidly transported back over the continent where they cannot be detected by the algorithm. While from South Africa and the Eastern US many well defined transport events can be traced in the satellite data, the quantitative NO2 export is largest from China, followed by Europe. In total, an NO2 outflow of 50 GgN/a is computed for the four main NO2 export regions which is small in comparison to total NOx emissions but sign
Das Projekt "Function of BAK1 in plant immunity" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Basel, Botanisches Institut, Abteilung Pflanzenökologie.In nature most plants are resistant to most pathogens and disease is rather the exception than the rule. A key aspect of this phenomenon is a resistance response called 'innate immunity'. It is based on the host recognition of characteristic microbial molecules, known as MAMPs (Microbe Associated Molecular Patterns), by specific receptors called pattern recognition receptors (PRRs). A paradigm of a MAMP is flagellin, the main building unit of the mobility organ of bacteria. Bacterial flagellin is perceived by the pattern recognition receptor FLS2 (FLagellin Sensing 2) at the surface of plant cells. Binding of flagellin to FLS2 on the outside of the cells induces a set of physiological responses inside the cells, which we can easily measure in our lab and which ultimately contribute to limitation of bacterial invasion and plant resistance. Our lab has focused in the last years in understanding how FLS2, a single pass transmembrane molecule, functions to transmit the signal from outside of the cell to its inside. We could demonstrate that upon stimulation with flagellin, FLS2 associates very quickly at the plasma membrane with a second receptor known as BAK1 (BRI1-Associated Kinase 1). This was initially a big surprise because BAK1 was already known as the co-receptor of the BRI1, a plant hormone receptor which regulates plant development but not plant immunity. More recently we developed an original biochemical approach to label and detect phosphorylated receptors in cell cultures in vivo. This allowed us to show that the transmission of the flagellin signal occurs via phosphorylation of FLS2 and BAK1 within seconds after flagellin perception. In addition we could show that BAK1 is capable of regulating several PRRs other than FLS2 by forming stable complexes. Thus BAK1 appears to be a crucial regulator or plant immunity in addition to its role in plant development. Our recent progress on the plants' flagellin-sensing system was mostly obtained using Arabidopsis as plant model. In view of the ability of BAK1 to form stable complexes with PRRs in a ligand-dependent manner, we are now interested to fish out and identify new PRRs, notably from crop species, using a proteomic approach. The identification of more PRRs in different plants is a very important step toward understanding plant innate immunity. In more general terms, better knowledge about innate immunity is crucial because it may reveal new strategies to fight the devastating impact of some plant diseases.
Das Projekt "Untersuchung der zeitlichen Entwicklung der Biofilmmatrix mit Hilfe der Raman-Mikroskopie (RM) und der konfokalen Laser-Scanning-Mikroskopie (CLSM)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Wasserchemie und Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie.Im beantragten Forschungsvorhaben soll die Raman-Mikroskopie als Untersuchungsmethode für Biofilme neben der konfokalen Laser-Scanning-Mikroskopie etabliert werden. Es soll ausgelotet werden, in wie weit die Raman-Mikroskopie in der Lage ist, ortsaufgelöst die chemische Zusammensetzung der extrazellulären polymeren Substanzen (EPS) in Biofilmen zu identifizieren. Die geplanten Untersuchungen sollen an heterotrophen Biofilmen durchgeführt werden, die unter definierten Strömungsbedingungen und mit verschiedenen Substraten kultiviert werden. Die Frühphase der Biofilmbildung ist dabei von besonderem Interesse. Welche polymeren Substanzen bereiten die Primärbesiedlung von Oberflächen vor und wie verändert sich dieser auch als 'Konditionierung beschriebene Vorgang bei variierenden Kultivierungsmedien'. Die in dieser Phase zu generierenden Ergebnisse sind im Hinblick auf eine Verhinderung der Besiedlung von Oberflächen von außerordentlich großem Interesse. Die Veränderung der chemischen Zusammensetzung der EPS-Matrix im Kultivierungsverlauf und der Einfluss von oxidierenden Desinfektionsmitteln auf die Matrix bilden einen weiteren Untersuchungsschwerpunkt im beantragten Vorhaben. Alle Fragestellungen sollen mit der Raman-Spektroskopie bearbeitet werden. Parallel sollen mit Hilfe klassischer Verfahren (Wägung und Umsatzraten) und der CLSM (Mikroorganismen und EPS-Glycokonjugate) die Biofilme charakterisiert werden. Diese Vorgehensweise macht es möglich, wirklich neue Erkenntnisse in einen geeigneten Kontext zu den bisher bekannten Struktur-Funktions-Eigenschaften von Biofilmen zu setzen.
Das Projekt "Umwelteigenschaften von Produkten - Optionen für die Ausgestaltung von Labels" wird/wurde gefördert durch: Europäische Kommission, Generaldirektion Umwelt / Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Ecologic Institut gemeinnützige GmbH.Informationen über die Umwelteigenschaften von Produkten - z.B. über die bei der Herstellung verursachten Treibhausgase oder die Energieeffizienz eines Produkts - sind wichtig, damit Verbraucher bewusste Kaufentscheidungen treffen können. Dieses Projekt untersucht verschiedene Möglichkeiten Umweltinformationen auf Produkten auszugestalten. Das Ecologic Institut analysiert insbesondere die rechtlichen Rahmenbedingungen, die sich aus dem Welthandelsrecht für solche Labels ergeben. Die Studie steht zum Download zur Verfügung.
Das Projekt "Health impact of engineered metal and metal oxide nanoparticles: Response, bioimaging and distribution at cellular and body level (HINAMOX)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Asociacion Centro de Investigacion Cooperativa en Biomaterials.Objective: Metal oxide and metal NPs are particularly dangerous for two reasons: their special catalytic activity coming from the properties of their nanointerface may interfere with numerous intracellular biochemical processes and the decomposition of NPs and the ion leakage could heavily interfere with the intracellular free metal ion homeostasis, which is essential for cell metabolism. A very specific problem is the difficulty of localizing and quantifying them in cells. Obtaining dose effect relationships is not simple, because of the unknown amount of material present in affected cells. The following main points will be addressed in this proposal: - Design and synthesis of metal oxide and metal NPs, which can be traced by SPECT, PET, and fluorescence techniques and the appropriate characterization of these NPs. - Application of label-free techniques, such as IBM and EM to ensure that the radioactive and fluorescent constituents do not modify the cytological and organismic response by themselves. - Characterization of the uptake, distribution kinetics and NP release at the level of the organism. - Study of the interaction of NPs with plasma components forming complexes with NPs and the assessment of their possible impact on the uptake compared with that of bare or capped particles. - Quantification and localization of metallic NPs in immune competent cells is a key task for the establishment of proper dose-response correlations. A technique applicable with living cells as ultimate control will be IBM, capable of detecting single metal NPs in cells at different depths. - Development of sophisticated cell physiological approaches focusing on the determination of oxidative activity, cytokine production and adaptive processes concerning signalling pathways beyond standard vitality tests. The research project will indicate toxic levels of various NPs and sub-toxic effects will be investigated by analysing the signalling response of immune cells.
Das Projekt "Energy+ Pumps - Technology Procurement for Very Energy Efficient Circulation Pumps" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Wuppertal Institut für Klima, Umwelt, Energie gGmbH.The Energy+ Pumps pilot project tested the instrument of co-operative procurement for the technology of highly energy-efficient circulation pumps for heating systems in a joint effort for 9 EU Member States. The project received financial support from the EU's Intelligent Energy - Europe Programme. It was the target of the project to accelerate the market breakthrough for the new generation of EC motor circulators. These circulators can save up to 80 percent of the electricity for pumping heating water, and around 1 percent of the overall electricity consumption in the EU. They will be the European standard from 2013 onwards. Twice a year, the project published lists of interested buyers and supporters as well as lists of circulators and condensing boilers that fulfill the Energy+ requirements on energy efficiency and other issues. Energy+ circulators consume no more electricity than what corresponds to the requirements for Class A of the voluntary label created by the manufacturer association Europump. The most recent lists, published in November 2008, include 26 circulator models of 8 manufacturers from Denmark, Germany, France, Italy, and Switzerland. In addition, there are almost 50 institutional buyers and 27 supporting institutions and organisations, acting as multipliers for the project through their publication efforts. The first lists were presented at the leading trade fair ISH in Frankfurt on the Main. In March 2008, the project presented the winners of the Energy+ Award Competition for highly energy-efficient circulators (two models from Grundfos, one from WILO) and the best electricity-saving condensing boiler (Solvis Max) at Mostra Convegno in Milan. In addition, the City of Salzburg, austria, receivd an Award for the most creative promotion campaign for Energy+ circulators. Finally, material to assist the selection of a highly energy-efficient circulator and a training course for installation contractors were developed and used in the participating countries. In Germany, the project was supported by the consumer advice centre NRW, ProKlima Hannover, the federation of energy consumers and E.ON Wesphalia Weser.
Das Projekt "FP6-POLICIES, Methodology Development towards a Label for Environmental, Social and Economic Buildings (LENSE)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Bauphysikbüro Prof. Kornadt und Partner.LEnSE is a research project that responds to the growing need in Europe for assessing a building's sustainability performance. The project draws on the existing knowledge available in Europe on building assessment methodologies. LEnSE aims to develop a truly holistic methodology that addresses the overall, integrating concept of sustainability. The main objective of LEnSE is to develop a methodology for the assessment of the sustainability performance of existing, new and renovated buildings, which is broadly accepted by the European stakeholders involved in sustainable construction. This methodology will allow for future labelling of buildings, in analogy with the Energy Performance Directive. The work should result in increased awareness of the European stakeholders and will allow adequate policy implementation on sustainable construction. The project consists of three main themes. The first theme is the identification and scope of the issues which need to be included in a sustainability assessment. This has to be wide enough to be acceptable and limited enough to be practicable. A broad consensus on these issues will be reached through strategic consultation of the relevant stakeholders. The second theme is the actual development of the assessment methodology. The content of the assessment will be developed for a limited, but representative range of key issues. Guidelines on how to address local variations will be provided. This work will be validated by the development of a prototype tool and tested on case study buildings. The key stakeholders on the European and national level will be highly involved in the development of the methodology, to guarantee a wide acceptance and implementation of the project results. These consultations will include national meetings with stakeholders and trans-national expert workshops. Thematic -stepping stone- publications, will serve as strategic reference and discussion documents for the stakeholder consultation rounds. Prime Contractor: Centre Scientifique et Technique de la Construction; Bruxelles; Belgium.
Das Projekt "Nanopore Sensing" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Basel, Institut für Organische Chemie.Nanofabricated pores in 20 nm-thick silicon nitride membranes were used to probe various protein analytes as well as to perform an antigen-antibody binding assay. A two-compartment electrochemical cell was separated by a single nanopore, 28 nm in diameter. Adding proteins to one compartment caused current perturbations in the ion current flowing through the pore. These perturbations correlated with both the charge and the size of the protein or of a protein-protein complex. The potential of this nanotechnology for studying protein-protein interactions is highlighted with the sensitive detection of -human chorionic gonadotropin, a hormone and clinical biomarker of pregnancy, by monitoring in real time and at a molecular level the formation of a complex between hormones and antibodies in solution. In this form, the assay compared advantageously to immunoassays, with the important difference that labels, immobilization, or amplification steps were no longer needed. In conclusion, we present proof-of-principle that properties of proteins and their interactions can be investigated in solution using synthetic nanopores and that these interactions can be exploited to measure protein concentrations accurately.
Origin | Count |
---|---|
Bund | 12 |
Type | Count |
---|---|
Förderprogramm | 12 |
License | Count |
---|---|
offen | 12 |
Language | Count |
---|---|
Deutsch | 5 |
Englisch | 10 |
Resource type | Count |
---|---|
Keine | 10 |
Webseite | 2 |
Topic | Count |
---|---|
Boden | 9 |
Lebewesen & Lebensräume | 11 |
Luft | 5 |
Mensch & Umwelt | 12 |
Wasser | 7 |
Weitere | 12 |