Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.
The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).
Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.
Whether primordial bodies in the solar system possessed internally-generated dynamos is a fundamental constraint to understand the dynamics and timing of early planetary formation. Paleointensity studies on several meteorites reveal that their host planets possessed magnetic fields within an order-of magnitude of the present Earths field. Interpretation of paleointensity data relies heavily on fundamental knowledge of the magnetic properties of the magnetic carriers, such as the single to multidomain size threshold or how the saturation magnetization varies as a function of grain size, yet very little knowledge exists about these key parameters for some of the main magnetic recorders in meteorites: the iron-nickel alloys. Moreover, most meteorites have experienced some amount of shock during their histories, yet the consequence of even very small stresses on paleointensity data is poorly known.We wish to fill these gaps by magnetically characterizing Fe-Ni alloys as a function of grain size and by determining how absolute and relative paleointensity data are biased by strain levels lower than those petrologically observable (less than 4-5 GPa). For example, our preliminary work shows that an imposed stress of 0.6 GPa will reduce absolute paleointensity estimates by 46Prozent for single domain magnetite-bearing rocks. In general, paleointensity determinations possess inherent disadvantages regarding measurement precision and the inordinate amount of human time investment. We intend to overcome these limitations by extending and improving our fully automated magnetic workstation known as the SushiBar.
bifa hat ein Vorhaben für die G8- Staaten bearbeitet, in dem die Entwicklungen in Deutschland innerhalb der neun Handlungsfelder ( Actions ) des Kobe 3R Action Plan dargestellt werden. Mit der 3R-Initiative beabsichtigen die G8-Staaten seit 2004 eine bessere Verankerung der Nachhaltigkeit im Umgang mit Rohstoffen durch die stärkere Förderung der drei Prinzipien Reduce, Reuse, Recycle , abgekürzt 3R , in den nationalen Abfallwirtschaftspolitiken. Im Rahmen der Beauftragung untersuchte bifa, welche Punkte aus dem Kobe 3R Action Plan bereits hinreichend durch bestehende Entwicklungen bzw. ergriffene Maßnahmen abgedeckt sind, bei welchen Aktionen noch Lücken bestehen und wie diese Lücken gefüllt werden können. Legt man die drei Zielsetzungen des Kobe 3R Action Plan und die ihnen zugeordneten Handlungsfelder als Prüfraster über die deutsche Abfallwirtschaftspolitik, lässt sich ein sehr hoher Erfüllungsgrad feststellen. Ein erheblicher Teil der vorgeschlagenen Handlungsoptionen war in Deutschland bereits vor 2008 durch konkrete Maßnahmen umgesetzt worden. Für einen anderen Teil wiederum lässt sich der Ursprung, z. B. in Form eines ersten Gesetzentwurfs, auf die Zeit vor 2008 zurückdatieren, die Umsetzung durch die Veröffentlichung im Bundesgesetzblatt aber fand 2008-2011 statt. Einige Regelungen setzen Richtlinien oder Verordnungen der EU, die ihrerseits zum Teil auf Bestrebungen Deutschlands hin zustande kamen, in nationales Recht um. Mit dem in einer fortgeschrittenen Version vorliegenden Entwurf eines novellierten Kreislaufwirtschaftsgesetzes vollzieht Deutschland einen weiteren wichtigen Schritt hin zu einer Abfallwirtschaft, deren Markenzeichen insbesondere eine hohe Ressourceneffizienz ist. Dennoch verbleiben Optimierungspotenziale, zu deren Ausschöpfung bifa Vorschläge für das Bundesumweltministerium erarbeitet hat. Im Zuge des Projekts analysierte bifa u. a. die Importe und Exporte notifizierungspflichtiger Abfälle. Der Saldo hat sich den bifa-Analysen zufolge seit 1998 umgekehrt: Wurden 1998 noch etwa doppelt so viel notifizierungspflichtige Abfälle exportiert wie importiert, hat sich der Import seitdem vervierfacht und die Exporte sind sogar leicht gesunken. Ein wichtiger Grund ist die Verfügbarkeit von Behandlungs- und Verwertungskapazitäten von hoher Leistungsfähigkeit in Deutschland. Die Schadstoffentfrachtung von Abfällen aus Ländern mit einer wenig entwickelten Entsorgungsinfrastruktur führt jedoch innerhalb der deutschen Öffentlichkeit immer wieder zu Kontroversen. Methoden: Analyse und Moderation sozialer Prozesse.
Degradation of the soil productivity due to salt accumulation (salinization) is a major concern in arid, semi-arid and coastal regions. Soil salinization is an old issue but encouraged irrigation practices have been rapidly increasing its intensity and magnitude in the past few decades. Studies have shown that excess of the irrigated water contributes significantly to evaporation from the bare soil surface and therefore to the salinization. In some parts of the world soil salinity has grown so acute that the agricultural lands have been abandoned. Evaporation salinization is mainly influenced by interaction between the flow and transport processes in the atmosphere and the porous-medium. On the atmosphere side, wind velocity, air temperature and radiation have a strong impact on evaporation. Furthermore, turbulence causes air mixing, influences the vapor transport and creates a boundary layer at the soil-atmosphere interface which indeed influences evaporation. On the porous-medium side, dissolved salt is transported under the influence of viscous forces, capillary forces, gravitational forces and advective and diffusive fluxes. The water either directly evaporates from the water-filled pores or it is transported to air due to diffusive processes. Continuous evaporation promotes salt accumulation and precipitation resulting in soil salinization. In the scope of this work we attempt to develop a model concept capable of handling flow, transport and precipitation processes related to evaporative salinization of an unsaturated porous-medium.
Due to the tendency to bioaccumulate, trace concentrations of selenium in fresh waters have led to disastrous toxicity effects on water birds and fish in the past. Although this adverse impact was first noticed in the early 1980s, to date no sustainable solution has been found for the remediation of selenium contaminated drainage and waste waters. Compared to water soluble forms, elemental selenium is considered less toxic. Therefore, various remediation approaches try to use microorganisms that are highly efficient in reducing selenium oxyanion concentrations by formation of insoluble elemental selenium. Such biogenic elemental selenium, however, does not crystallize to large particles and remains dispersed in solution as a colloidal suspension, thus being subject to re-oxidation, uptake and assimilation by biota. The probable reason for the tendency of biogenic selenium to remain in solution suspended as nanoparticles is an organic polymer layer modifying the surface, preventing crystallization and conferring the selenium core with physico-chemical properties different from particles without such a layer. To date, it is not known, which molecules (proteins, (poly)saccharides, etc.) form this organic polymer layer. Consequently, it is furthermore unknown, if all microbial groups mediating selenium reduction (either via a respiratory or via co-metabolic reduction) produce the same organic polymer layer around the selenium core. The physico-chemical properties of the layer, however, will strongly influence sedimentation and transport processes of selenium in the environment. Due to the complex chemistry and the nanocrystalline character of the selenium particles, uncertainties persist concerning the selenium solid phase, which is formed biogenically. It is not known, if and to which extent selenium that bears such a polymers layer is subject to further biotic and abiotic oxidation and reduction processes, although these processes will largely govern the ecotoxicological effects of selenium. The present project aims at filling the gaps in understanding biogenic selenium formation by systematically investigating the morphology and speciation of the solid phase and the surface modification mechanisms. By direct (spectroscopic) methods we will determine selenium solid phase speciation and its transformations under environmental conditions. We will develop methods allowing the identification of the organic polymer layers modifying selenium nanoparticles by different microbial groups. Thus we will be able to deliver a mechanistic model describing both layer and core of biogenic selenium nanoparticles and the possible impact(s) they have on each other.
Geological storage involves injecting CO2 directly into underground geological formations. CO2 has been used for decades in oil industry to increase recovery (Figure 1). Saline aquifers (Figure 2)have also been suggested as CO2 storage sites. Prevention of post sequestration leakage to the surface from deep saline aquifers is one the key issues in disposal of CO2 into the aquifer. The permanence of the sequestration of CO2 into the saline aquifer depends strongly on the integrity of the top sealing formation over geological time (from one hundred to several thousand years depending on the size). In order to assess whether the stored CO2 retains in the formation or not, the resistivity of the cap rock against the geochemical alteration or geomechanical deformation should be examined. Numerical Simulation: This multidisciplinary project is aimed to better quantify the long-term integrity of the cap rock based on the laboratory experiments. In order to characterize the reservoir, laboratory experiments will be conducted on the selected rocks form the North Rhine-Westphalia (Germany) region including petrophysical tests. In this study, the experimental results and the geologic data of the Bunter sandstone and Rotliegend sandstone formations will be used in geological model. Using ECLIPSE commercial simulator enables us to fill the gap between theoretical analysis and laboratory experiments. Several injection scenarios will be performed to study the multi-component behavior of the multi-phase flow in porous media as well as geochemical alteration and geomechanical deformation of the cap rock. We will also introduce the transport phenomena (heat and mass transfer) of CO2 by using SHEMAT and TOUGHREACT simulators. Finally we will look for a solution to link these three simulators to have the best leakage risk assessment. This project is funded by the West LB foundation 'Future of North Rhine-Westphalia.
Soil erosion is a world-wide problem with both economic and environmental effects. Consequences include loss of arable land and sediment-derived impacts on receiving water bodies. Even relatively small amounts of erosion can exceed the soil generation rate. Soil sediments are potential pollutants of receiving waters as they reduce light penetration and carry chemical pollutants such as pesticides and phosphorus. Soil erosion can be considered at local and basin scales. Rain is often the main initiator of erosion; other mechanisms include sheet erosion, rilling and gullying. These are all inherently hillslope-scale processes, the mechanisms of which involve connections between rainfall and raindrop impact, water flow, shear stress at the surface of the soil, sediment entrainment and deposition, etc. Management of soil erosion needs to be considered at the basin scale while attenuation measures are local. Physical understanding of erosion is based on local scale processes. At this scale overland flow-borne sediments and rilling (small channels that can be removed relatively easily) are the most important mechanisms. Rills have the potential to form channels under conditions of continued erosion. In addition, rills form in areas of flow concentration and thus rills are much more serious for erosion than interrill areas. The long-term goal of this fundamental research is to develop and validate process-based models of erosion-derived sediment transport at the scale of an element in a discretized catchment model, along with accompanying transport and transformations of nutrients and pollutants. This project seeks to fill one of the fundamental gaps in knowledge: mechanistic modelling of sediment transport at the local scale within a catchment. The project will further develop the mechanistic hillslope-scale Hairsine-Rose erosion model. This model includes both overland flow and sediment dynamics, and has been found to predict well erosion experimental data. However, it involves mechanistic assumptions that need to be clarified, and in addition it needs to be applied to circumstances that are more representative of reality, rather than constrained laboratory conditions. Potential mechanisms that could have significant effects on erosion modelling include the effect of infiltration/redistribution within the soil and the role of specific erosional mechanisms such as re-entrainment of previously eroded material verses transport by raindrop impact. Other factors to be investigated and modelled are multiple rainfall events and the effect of variable stone cover. Experiments and modelling will provide the basis of ascertaining the importance of such mechanisms.
Strong evidence exists that the oxidation of H2S by ferric (oxyhydr)oxides occurs also in ground water systems and may exert a major role for the sulphur and iron cycle and in particular for the electron and carbon flow in aquifers. To date, no systematic study has been performed that allows to quantitatively assess its significance in such systems. This project aims to fill this gap of knowledge. The extent of the reaction depends on mineral reactivity, which we hypothesize can be expressed in terms of a generalized kinetic model for the full pH range of environmental relvance. This model accounts for the adsorption of H2S at lower pH values and of HS- at circumneutral pH to the neutral ferric (oxyhydr)oxide surface to form the reactive species FeSH. Variations in reactivity may be caused by intrinsic factors such as surface acidity of the iron mineral and solution composition, such as ionic strength and competition with other ions. The overall goals of this project therefore are to demonstrate the validity of this approach in order to quantify the kinetics for abiotic anaerobic H2S oxidation by ferric (oxyhydr)oxides, and to elucidate the role of this process as a precursor reaction for further microbial transformation of sulphur species in the aquifer.
| Origin | Count |
|---|---|
| Bund | 19 |
| Type | Count |
|---|---|
| Förderprogramm | 19 |
| License | Count |
|---|---|
| offen | 19 |
| Language | Count |
|---|---|
| Deutsch | 2 |
| Englisch | 18 |
| Resource type | Count |
|---|---|
| Keine | 16 |
| Webseite | 3 |
| Topic | Count |
|---|---|
| Boden | 18 |
| Lebewesen und Lebensräume | 18 |
| Luft | 7 |
| Mensch und Umwelt | 19 |
| Wasser | 11 |
| Weitere | 19 |