API src

Found 19 results.

IWaTec - Integrated Water Technologies

Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.

The scalar organization of environmental governance: an institutionalist perspective on the transformation of water and marine governance in the European Union

The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).

Soil colour spectra of prehistoric pit fillings as a new analytical tool to measure changing soil characteristics over time on a regional scale

Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Ground-truthing magnetic recording in meteorites

Whether primordial bodies in the solar system possessed internally-generated dynamos is a fundamental constraint to understand the dynamics and timing of early planetary formation. Paleointensity studies on several meteorites reveal that their host planets possessed magnetic fields within an order-of magnitude of the present Earths field. Interpretation of paleointensity data relies heavily on fundamental knowledge of the magnetic properties of the magnetic carriers, such as the single to multidomain size threshold or how the saturation magnetization varies as a function of grain size, yet very little knowledge exists about these key parameters for some of the main magnetic recorders in meteorites: the iron-nickel alloys. Moreover, most meteorites have experienced some amount of shock during their histories, yet the consequence of even very small stresses on paleointensity data is poorly known.We wish to fill these gaps by magnetically characterizing Fe-Ni alloys as a function of grain size and by determining how absolute and relative paleointensity data are biased by strain levels lower than those petrologically observable (less than 4-5 GPa). For example, our preliminary work shows that an imposed stress of 0.6 GPa will reduce absolute paleointensity estimates by 46Prozent for single domain magnetite-bearing rocks. In general, paleointensity determinations possess inherent disadvantages regarding measurement precision and the inordinate amount of human time investment. We intend to overcome these limitations by extending and improving our fully automated magnetic workstation known as the SushiBar.

3R-Studie - Reduce, Reuse, Recycle für die G8-Staaten

bifa hat ein Vorhaben für die G8- Staaten bearbeitet, in dem die Entwicklungen in Deutschland innerhalb der neun Handlungsfelder ( Actions ) des Kobe 3R Action Plan dargestellt werden. Mit der 3R-Initiative beabsichtigen die G8-Staaten seit 2004 eine bessere Verankerung der Nachhaltigkeit im Umgang mit Rohstoffen durch die stärkere Förderung der drei Prinzipien Reduce, Reuse, Recycle , abgekürzt 3R , in den nationalen Abfallwirtschaftspolitiken. Im Rahmen der Beauftragung untersuchte bifa, welche Punkte aus dem Kobe 3R Action Plan bereits hinreichend durch bestehende Entwicklungen bzw. ergriffene Maßnahmen abgedeckt sind, bei welchen Aktionen noch Lücken bestehen und wie diese Lücken gefüllt werden können. Legt man die drei Zielsetzungen des Kobe 3R Action Plan und die ihnen zugeordneten Handlungsfelder als Prüfraster über die deutsche Abfallwirtschaftspolitik, lässt sich ein sehr hoher Erfüllungsgrad feststellen. Ein erheblicher Teil der vorgeschlagenen Handlungsoptionen war in Deutschland bereits vor 2008 durch konkrete Maßnahmen umgesetzt worden. Für einen anderen Teil wiederum lässt sich der Ursprung, z. B. in Form eines ersten Gesetzentwurfs, auf die Zeit vor 2008 zurückdatieren, die Umsetzung durch die Veröffentlichung im Bundesgesetzblatt aber fand 2008-2011 statt. Einige Regelungen setzen Richtlinien oder Verordnungen der EU, die ihrerseits zum Teil auf Bestrebungen Deutschlands hin zustande kamen, in nationales Recht um. Mit dem in einer fortgeschrittenen Version vorliegenden Entwurf eines novellierten Kreislaufwirtschaftsgesetzes vollzieht Deutschland einen weiteren wichtigen Schritt hin zu einer Abfallwirtschaft, deren Markenzeichen insbesondere eine hohe Ressourceneffizienz ist. Dennoch verbleiben Optimierungspotenziale, zu deren Ausschöpfung bifa Vorschläge für das Bundesumweltministerium erarbeitet hat. Im Zuge des Projekts analysierte bifa u. a. die Importe und Exporte notifizierungspflichtiger Abfälle. Der Saldo hat sich den bifa-Analysen zufolge seit 1998 umgekehrt: Wurden 1998 noch etwa doppelt so viel notifizierungspflichtige Abfälle exportiert wie importiert, hat sich der Import seitdem vervierfacht und die Exporte sind sogar leicht gesunken. Ein wichtiger Grund ist die Verfügbarkeit von Behandlungs- und Verwertungskapazitäten von hoher Leistungsfähigkeit in Deutschland. Die Schadstoffentfrachtung von Abfällen aus Ländern mit einer wenig entwickelten Entsorgungsinfrastruktur führt jedoch innerhalb der deutschen Öffentlichkeit immer wieder zu Kontroversen. Methoden: Analyse und Moderation sozialer Prozesse.

Productive Use of Electricity (PRODUSE)

Access to modern energy is widely considered an important ingredient in the strategy towards alleviating poverty and achieving the Millennium Development Goals (MDG). In particular, it is expected that electrification removes bottlenecks for enterprise development and enables new potentials for income generation. At the same time, robust evidence for this hypothesis is hardly existent. In order to start filling this gap between practitioner's perception and lacking robust evidence, GIZ and World Bank launched the Productive Use of Electricity (PRODUSE) study. In the case of three African countries - Benin, Ghana, and Uganda - the usage of electricity in micro-enterprises was examined and the effect of electricity usage on firm performance was assessed. For this purpose, between 200 and 400 micro-enterprises were surveyed in target regions of GIZ electrification interventions in the three countries. RWI designed the overall survey and evaluation methodology, developed the research tools for all countries and conducted the field work in Benin and Uganda. The electrification interventions had not been implemented yet at the time when the surveys were conducted. While the collected data also serves as a baseline for future ex-post evaluation, a cross-sectional ex-ante approach was applied. In order to immediately derive insights on impacts of productive electricity usage the yet non-electrified GIZ target region was surveyed and, in addition, a comparable, already electrified region. Econometric evaluation techniques were used to identify comparable firms from both regions in order to establish a proper counterfactual situation. Results of this research effort suggest that impacts of electricity access on micro-enterprises are modest only. Take-up rates of both grid connections and appliances are low. On the other hand, electricity availability seems to trigger creation of new and particularly promising firms. One important objective of PRODUSE was to make rigorous evaluation techniques accessible for practitioners. Therefore, RWI developed a hands-on guide for designing evaluation studies regarding the impacts of productive electricity usage. Complementary to the existing literature on evaluation methods, this guide familiarizes project managers with the concrete steps that have to be undertaken to plan and implement an evaluation.

Monitoring of Water Content Distributions inside a Lysimeter with GPR-Tomography

A lysimeter is a vessel containing soil placed with its top edge to the ground surface. Lysimeter are used to study phases of the hydrological cycle in terms of water content and dynamics, e.g. infiltration, evapotranspiration or runoff. Lysimeter provide a good alternative to carry out and test various methods or theoretical theories under relative undisturbed circumstances. In cooperation with the Institute of Chemistry and Dynamics of the Geosphere, IV Agrosphere (ICG-IV) of the Forschungszentrum Jülich GmbH, the solute transport inside a lysimeter ought to be investigated.To avoid the inevitable problem of the boundary conditions for electromagnetic geophysical methods of a normal lysimeter with its metal wall, an alternative had to be found. Therefore PVC-cylinders were chosen with 1.5 m height and 1.2 m diameter. The dielectric permittivity of soils depends strongly on the water content. Therefore, GPR was used as it can provide non-invasive high-resolution information regarding the distribution of the dielectric permittivity of a heterogeneous medium. Because the used lysimeter has PVC walls tomographic measurements can be performed. Considering the relatively small dimensions of the lysimeter (1.2m diameter, 1.5m height) and the armament with sensors for other methods, a pair of shielded antennas was chosen with centre frequencies of approx. 750 MHz. In April and September 2002 first measurements were carried out on a filled but unequipped lysimeter to check signal quality, feasibility as well as the needed time to gather a dataset under ideal conditions. Furthermore pot irrigation tests were made in 2002 and 2004 to estimate the actual resolution with the available equipment. To derive the volumetric water content, the calculated dielectric permittivity values have to be transformed. Based on the soil inside the lysimeter (approx. 80% sand, 15% silt and 5% clay with approx. 40% porosity) appropriate mixing formulas for bulk dielectric permittivity have to be chosen and compared to the results gathered from alternative methods.

Modellkopplung und komplexe Strukturen, Model coupling and complex structures - Evaporation-driven transport and precipitation of salts in porous media

Degradation of the soil productivity due to salt accumulation (salinization) is a major concern in arid, semi-arid and coastal regions. Soil salinization is an old issue but encouraged irrigation practices have been rapidly increasing its intensity and magnitude in the past few decades. Studies have shown that excess of the irrigated water contributes significantly to evaporation from the bare soil surface and therefore to the salinization. In some parts of the world soil salinity has grown so acute that the agricultural lands have been abandoned. Evaporation salinization is mainly influenced by interaction between the flow and transport processes in the atmosphere and the porous-medium. On the atmosphere side, wind velocity, air temperature and radiation have a strong impact on evaporation. Furthermore, turbulence causes air mixing, influences the vapor transport and creates a boundary layer at the soil-atmosphere interface which indeed influences evaporation. On the porous-medium side, dissolved salt is transported under the influence of viscous forces, capillary forces, gravitational forces and advective and diffusive fluxes. The water either directly evaporates from the water-filled pores or it is transported to air due to diffusive processes. Continuous evaporation promotes salt accumulation and precipitation resulting in soil salinization. In the scope of this work we attempt to develop a model concept capable of handling flow, transport and precipitation processes related to evaporative salinization of an unsaturated porous-medium.

Forschergruppe (FOR) 580: Electron transfer processes in anoxic aquifers, Sub project:The effect of iron(III)-sulfide interactions on electron transfer processes in anoxic aquifers

Strong evidence exists that the oxidation of H2S by ferric (oxyhydr)oxides occurs also in ground water systems and may exert a major role for the sulphur and iron cycle and in particular for the electron and carbon flow in aquifers. To date, no systematic study has been performed that allows to quantitatively assess its significance in such systems. This project aims to fill this gap of knowledge. The extent of the reaction depends on mineral reactivity, which we hypothesize can be expressed in terms of a generalized kinetic model for the full pH range of environmental relvance. This model accounts for the adsorption of H2S at lower pH values and of HS- at circumneutral pH to the neutral ferric (oxyhydr)oxide surface to form the reactive species FeSH. Variations in reactivity may be caused by intrinsic factors such as surface acidity of the iron mineral and solution composition, such as ionic strength and competition with other ions. The overall goals of this project therefore are to demonstrate the validity of this approach in order to quantify the kinetics for abiotic anaerobic H2S oxidation by ferric (oxyhydr)oxides, and to elucidate the role of this process as a precursor reaction for further microbial transformation of sulphur species in the aquifer.

Safe Implementation of Innovative Nanoscience and Nanotechnology (SIINN)

Objective: The primary aim of the SIINN ERA-NET is to promote the rapid transfer of the results of nano-science and nanotechnology (N&N) research into industrial application by helping to create reliable conditions. In order to strengthen the European Research Area and to coordinate N&N-related R&D work, the project has the aim of bringing together a broad network of ministries, funding agencies, academic and industrial institutions to create a sustainable transnational programme of joint R&D in N&N. The commercial application of nano-materials (NMs) products is increasing rapidly, but one important question, the safety of NMs, still represents a barrier to their wide innovative use. Therefore the first priority of SIINN is to focus on developing a consolidated framework to address nano-related risks and the management of these risks for humans and the environment by investigating the toxicological behaviour of NMs. European R&D activities in N&N remain largely uncoordinated and fragmented, resulting in the sub-optimal use of available resources, such as human resources, research equipment and funding. Since available data on their toxicological behaviour is often scant, unreliable or contradictory, the SIINN Project will focus on ways of remedying this situation. After defining the criteria important for NM toxicology, the environmental health and safety (EHS) information currently available to Europe will be examined. Liaisons will strategically be established and maintained. They will network with organisations looking into the EHS of NMs within Europe and abroad with the aim of continually exchanging information with these. Available information will be examined for their reliability in respect of the assessment of the risks of NMs towards human health and to the environment and major knowledge gaps identified. At least two joint, transnational calls will be organised during the initial lifetime of SIINN in order to fill these gaps.

1 2