Als Grundlage für hochaufgelöste Klimarekonstruktionen der letzten Jahrtausende dienen jahrgenau datierbare natürliche Klimaproxies wie Jahresringe von Bäumen. Bisher konzentrierten sich dendroklimatologische Untersuchungen in Europa auf Temperaturrekonstruktionen borealer und alpiner Waldgrenzstandorte. In weitaus geringerem Umfang liegen dagegen hydroklimatische Rekonstruktionen basierend auf niederschlagssensitiven Baumarten der Tieflagen (kleiner als 1000 m NN) vor, obgleich hydroklimatische Schwankungen in der Abschätzung zukünftiger und historischer Klimaveränderungen eine wichtige Rolle spielen. Die Steuerungsfaktoren, das Ausmaß und die zeitliche Abfolge dekadischer bis mehrhundertjähriger Schwankungen im Baumwachstum, welche für die Rekonstruktion des gesamten Spektrums hydroklimatischer Variabilität von entscheidender Bedeutung sind, wurden bisher kaum untersucht und verstanden. In dem geplanten Projekt sollen nun zum ersten Mal langfristige Wachstumstrends auf verschiedenen raum-zeitlichen Skalen von acht europäischen Baumarten über die letzten 1.000 Jahre gegenübergestellt werden. Die hauptsächlich aus archäologischen und historischen Holzfunden generierten Jahrringdaten von Eiche, Buche, Erle, Esche, Ulme, Tanne, Kiefer und Fichte, in Verbindung mit Daten lebender Bäume, decken die letzten 1.000 Jahre lückenlos mit hoher Belegung ab. Dieser einmalige Datenbestand mit rund 60.000 Jahrringserien ökologisch und ökonomisch wichtiger heimischer Baumarten wird von europäischen Jahrringforschern bereitgestellt. Das Ziel des geplanten Projektes ist ein besseres Verständnis der raum-zeitlichen Variabilität von niederfrequenten Wachstumstrends und die Identifizierung gemeinsamer Faktoren, die das längerfristige Baumwachstum in Europa maßgeblich steuern (z.B. Klima und/oder Vulkanemissionen, Kohlenstoffdioxidgehalt der Atmosphäre oder Veränderungen der Sonnenaktivität). Die angewandten Methoden umfassen neue Standardisierungsverfahren, Trend- und Spektralanalysen sowie Filterungsverfahren, um niederfrequente Schwankungen der Jahrringchronologien zu detektieren und extrahieren. Faktoren, die das langfristige Baumwachstum maßgeblich steuern, werden unter Einbeziehung verschiedener Klimaparameter (Temperatur, Niederschlag, Abflussmengen von Flüssen, Grundwasserstände) sowie Zeitreihen externer und interner Einflüsse auf das Klimasystem identifiziert. Darüber hinaus werden die langfristigen Wachstumstrends mit Zeitreihen anderer Paläoarchive verglichen. Die in dem geplanten Projekt gewonnenen neuen Erkenntnisse über klimabedingter, langfristiger Wachstumsschwankungen und deren Ursachen werden eine deutlich bessere Grundlage für zukünftige valide Klimarekonstruktionen, globale Klimamodelle und für die Quantifizierung von Langzeitveränderungen des globalen Kohlenstoffkreislaufs schaffen.
Die Nukleation von Eispartikeln spielt eine wichtige Rolle bei der Wolken- und Niederschlagsbildung, mit Konsequenten für die atmosphärische Chemie, die Wolkenphysik und das Erdklima. Für eine Quantifizierung und Vorhersage des Einflusses von Wolken in Wettervorhersage- und Klimamodellen muss die Bildung von Eispartikeln daher in einer realistischen Art und Weise beschrieben werden. Einer der wichtigen Bildungsmechanismen ist dabei die heterogene Eisnukleation im Immersionsmodus, bei dem Eis an der Oberfläche eines in einem wässrigen Tröpfchen suspendierten Eiskeims - zum Beispiel eines Mineralstaub- Partikels - gebildet wird. Wir werden im Rahmen dieses Forschungsprojekts zahlreiche Gefrierexperimente im Immersionsmodus durchführen. So werden eine Reihe verschiedener, als Aerosolpartikel in der Atmosphäre vorkommende Materialien auf ihre Eisnukleationseigenschaften hin untersucht werden. Insbesondere sollen hier die Temperatur- und Zeitabhängigkeit der von diesen Materialien ausgelösten Eisnukleation quantifiziert werden. Dabei werden wir spezielles Augenmerk auf die systematische Untersuchung der von porösen Materialien ausgelösten Eisnukleation legen. Es sollen sowohl synthetische Materialien wie beispielsweise mesoporöse Silikate untersucht werden, als auch natürlich vorkommende Materialien wie etwa mikroporöse Zeolithe.
Im IpsPro-Verbundvorhaben entwickeln Forschende der FVA Baden-Württemberg, des Staatsbetriebs Sachsenforst und der Universität Hamburg das Borkenkäfer-Frühwarnsystem IpsRisk, mit dessen Hilfe die Abschätzung des Risikos für Buchdruckerbefall verbessert werden soll. Gesamtziel ist es, die aktuelle Gefährdungssituation durch den Buchdrucker in potenziell bedrohten Fichtenbeständen mit möglichst hoher zeitlicher und räumlicher Auflösung einschätzen zu können. Hierfür werden verschiedene Teilrisiken, die sich aus Standorts-, Klima- und Wasserhaushaltsverhältnissen, Eigenschaften der Fichtenbestände, der Schwärmaktivität des Buchdruckers, beobachtetem Vorbefall sowie dem Brutraumangebot (z.B. Windwürfe) ableiten, kombiniert. Das resultierende Befallsrisiko durch den Buchdrucker wird in IpsRisk tagesaktuell und standortsgenau in Form einer Warnkarte dargestellt und soll zukünftig Waldbesitzenden, -bewirtschaftenden und weiteren Interessierten frei zugänglich, online zur Verfügung gestellt werden. Indem IpsRisk dadurch eine Fokussierung des Monitorings auf besonders gefährdete Bestände ermöglicht, kann das Borkenkäfer-Management wesentlich effizienter gestaltet werden. Das IpsPro-Verbundvorhaben wird durch die Fachagentur Nachwachsende Rohstoffe, einen Förderträger des Bundesministeriums für Ernährung und Landwirtschaft, gefördert. Es ist in drei Teilvorhaben sowie insgesamt sieben Arbeitspakete (AP) gegliedert und hat eine Laufzeit vom 01.11.2017 bis 31.10.2021. Das Teilvorhaben 1 'Buchdruckerphänologie (AP 2) und Trockenstress-Disposition (AP 3)' sowie das AP 7 'Systemoptimierung und Validierung' werden an der FVA Baden-Württemberg bearbeitet. Buchdruckerphänologie (Abteilung Waldschutz): Entwicklung und Schwärmverhalten des Buchdruckers werden stark durch die Witterung, insbesondere die Temperatur, beeinflusst. Daraus folgt ein komplexes räumliches und zeitliches Muster von Schwärm- und somit Befallsintensität. Um dies im Borkenkäfer-Frühwarnsystem IpsRisk abbilden zu können, kommen das Borkenkäfer-Phänologiemodell PHENIPS und aus historischen Fallenfangdaten generierte Verteilungsfunktionen zum Einsatz. Ein weiterer wichtiger Faktor in der Abschätzung von Borkenkäferbefall ist die Populationsgröße, welche anhand des Vorjahresbefalls abgeschätzt werden kann. Eigene sehr detaillierte Aufnahmen in den Nationalparken Schwarzwald und Hunsrück-Hochwald ermöglichen ein vertiefendes Verständnis von Phänologie sowie lokaler Befallsdynamik im Jahresverlauf; eine außergewöhnliche Datenbasis, mit der IpsRisk kalibriert werden kann. Trockenstress-Disposition (Abteilung Boden und Umwelt): Die aktuelle Wasserverfügbarkeit sowie die zurückliegende Trockenstresshistorie beeinflussen maßgeblich die Anfälligkeit von Fichtenbeständen gegenüber Borkenkäferbefall. Im IpsPro-Verbundvorhaben wird daher die Wasserversorgung der Fichtenwälder räumlich und zeitlich hochaufgelöst mithilfe des Wasserhaushaltsmodells RoGeR modelliert. Der daraus abgeleitete Trockenstress-Indikator 'relatives pflanzenverfügbares Wasser im Wurzelraum' geht als tagesaktuelles, dynamisches Teilrisiko in das Borkenkäfer-Frühwarnsystem IpsRisk ein. Im Rahmen von IpsPro wurden 2018 in den Nationalparken Schwarzwald und Hunsrück-Hochwald Bodenfeuchtemessflächen auf repräsentativen, Fichten-dominierten Standorten eingerichtet, auf denen die Bodenfeuchte in 30 und 60 cm Tiefe stündlich und in zehnfacher Wiederholung erfasst wird. Die Bodenfeuchtemessungen dienen der Einschätzung der aktuellen Situation und werden in erster Linie zur Plausibilisierung von RoGeR herangezogen. Aufgrund der zunehmenden Relevanz der Wasserversorgung für die Vitalität von Wäldern wird das kontinuierliche Bodenfeuchtemonitoring auch nach Projektende weiter fortgeführt werden. (Text gekürzt)
Die Expedition mit dem Forschungsschiff 'Sonne' (Fahrt So 258) hat zum Ziel, durch den Einsatz neuer Technologien und Experimente weitere Erkenntnisse zur Sinnesbiologie, vor allem zu Biolumineszenz der mesopelagischen Fauna zu liefern. Durch die Zusammenarbeit und Teilnahme von renommierten Wissenschaftler-Kollegen aus England, USA und Australien wird ein breites Spektrum von Methoden zum Einsatz kommen (autonome Plattformen für das Filmen und Datensammeln in Tiefen von 500-1000 m, 4 elektrophysiologische Mess-Apparaturen zur Charakterisierung der Regenration von Rhodopsin sowie die zeitlichen und räumlichen Auflösung der Retinae bzw. den Augen von Fischen, Krebsen und Tintenfischen). Weiterhin werden wir in einem Querschnitt vieler Arten durch molekularbiologische Analysen die Evolution der Tiefsee-Rhodopsine untersuchen, ein in diesem Umfang völlig neuartiges Projekt. Darüber hinaus hoffen wir, durch unsere Fänge weitere Arten und Daten zur Evolution der Teleskopaugen und ihrer speziellen optischen Eigenschaften liefern zu können. Die Gewässer des Indischen Ozeans, die die Sonne-Fahrt 258 besuchen wird, sind bisher erst wenig systematisch untersucht worden. Daher ist nicht auszuschließen, dass auch neue Spezies angetroffen werden. An Bord werden die physiologischen Experimente durchgeführt, da sie lebendes Gewebe erfordern. Diese Ergebnisse können zeitnah zur Publikation aufbereitet werden. Ansonsten werden wir für die morphologischen und molekularbiologischen Arbeiten das gefangene Material an Bord aufbereiten (präparieren, fixieren bzw. für den Transport konservieren). Die Analyse dieser Proben erfolgt in den Heimatlaboren und kann erfahrungsgemäß mehrere Jahre in Anspruch nehmen.
Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.
Ziel des Vorhabens ist, einen spezifischen Beitrag zur Umsetzung der europäischen Biodiversitätsstrategie 'Grüne Infrastruktur' zu liefern (siehe EU/Gd. Umwelt 2013). Das Vorhaben untersucht, wie die Ausbreitung bzw. der Genfluss von Pflanzen zwischen Fragmenten (funktionelle Konnektivität) gewährleistet werden kann, um das Überleben von Pflanzen in fragmentierten Landschaften und damit die Ökosystemdienstleistungen der entsprechenden Habitate zu ermöglichen. Dabei wird der Genfluss über Pollen sowie über Samen untersucht. Die Untersuchungen beinhalten sowohl die direkte Erfassung im Gelände (WP 2) als auch die mit Hilfe genetischer Methoden (neutrale Marker; WP 3). Im Fokus steht dabei der FFH-Lebensraum Kalkmagerrasen. Die Untersuchungsgebiete liegen in Schweden, Deutschland, England und Belgien. Historische und aktuelle Landnutzungskarten, die Artenzusammensetzung historisch alter und junger Kalkmagerrasen (WP 1) in Verbindungen mit den Ergebnissen aus WP 2 und 3 erlauben die Bewertung des tatsächlichen Genflusses und der Ausbreitung von Arten und damit Empfehlungen, wie eine grüne Infrastruktur bezüglich dieser Lebensräume aussehen sollte (WP 4).
a) Umweltdegradation, Klimavariabilität und Klimawandel sind Faktoren, die zu Migrationsentscheidungen beitragen. Dies gilt eindeutig für die Flucht aufgrund plötzlicher Extremereignisse, die einen Verbleib in einer Region nicht erlauben. In welchem Ausmaß Umweltzerstörung und Folgen des Klimawandels, die sich über einen längeren Zeitraum hin entwickeln, zu Migrationsentscheidungen führen, die Wanderungsbewegungen innerhalb eines Staates oder Staatsgrenzen überschreitend sein können, ist derzeit noch unzureichend geklärt. Prognosen möglicher Migrationsströme aufgrund von Umweltzerstörung, Ressourcenproblemen und Klimawandel durch verschiedene Autor*Innen und Institutionen beruhen vielfach auf unterschiedlichen Annahmen und der Berücksichtigung einer Vielzahl von kontextbezogenen Variablen (sowohl umweltbezogene als auch nicht umweltbezogene). Die Folge sind abweichende und zum Teil konträre Schlussfolgerungen. Ebenso sind Ansätze und Theorien zur Erklärung und zum Verständnis umweltbezogener Migrationsentscheidungen sowie die verwendeten Definitionen in diesem Forschungsfeld uneinheitlich und divers. b) In dem UFOPLAN-Vorhaben sollen die wesentlichen Ansätze und Prognosemodelle für Umwelt- und Klimamigration sowie deren Ergebnisse ausgewertet, synoptisch zusammengestellt und kritisch diskutiert werden. Die potentiellen Folgen umweltbezogener und klimabedingter Migrationsströme für Europa und Deutschland sollen herausgearbeitet und in einem Bericht dargestellt werden. Im Rahmen des Vorhabens ist ein Fachgespräch mit internationaler Beteiligung vorgesehen. Ziel des Fachgesprächs ist ein Austausch über die Verlässlichkeit der diversen Ansätze und Prognosemodelle für Umwelt-migration und Umweltflüchtlinge. Außerdem ist eine internationale öffentliche Veranstaltung geplant, in der die Ergebnisse des Vorhabens vorgestellt und diskutiert werden.
Unter Zuhilfenahme von modernsten, webbasierten Technologien werden im Teilprojekt des Fraunhofer IGD interaktive Lehrmaterialien zum Thema Plastikmüll und Mikroplastik entwickelt werden. Die inhaltlichen Schwerpunkte liegen dabei auf der Vermittlung der ubiquitären Quellen von Mikroplastik sowie auf der anschaulichen Vermittlung der Ergebnisse aus den Arbeitspaketen der Partner (Modellierung von Quellen, Eintrittspfaden, Transportprozessen und Verbleib von Mikroplastik im Warnow-Einzugsgebiet, dem Warnow Ästuar und der angrenzenden Ostsee). Diese Inhalte sollen auf großformatigen Multi-Touch-Tischen Schülern pädagogisch aufbereitet nahegebracht werden. Mit vielen Interaktionsmöglichkeiten (z.B. Vergleiche verschiedener Szenarien, freies Bewegen in Raum und Zeit, 'Verfolgen' von Plastikmüll-Partikeln) soll das Interesse von Schülern geweckt, ihr Bewusstsein für die Thematik Plastikmüll sensibilisiert und die Ergebnisse der Forschungsarbeiten des IOW zum Thema vermittelt werden Die Arbeiten des IGD lassen sich grob in zwei größere Blöcke unterteilen, die parallel zu den anderen Arbeitspaketen umgesetzt werden. Insbesondere der 2. Block ist dabei inhaltlich an die Ergebnisse der anderen WPs gekoppelt und erfordert eine enge Zusammenarbeit mit den anderen Projektpartnern. Das Ziel ist die Entwicklung von zwei Multimedia-Modulen für einen Multi-Touch-Tisch, an dem sich über die vielfältigen Quellen von Plastikmüll und Mikroplastik in der Umwelt (speziell Strand) informiert werden kann. Über diese Module sollen die Modellierungs- und Simulations-Ergebnisse aus den WPs der Projektpartner zur Erfassung, Modellierung und Quantifizierung der Emissionen vermittelt werden. Am Ende des Projektes soll es eine Wanderausstellung geben, bei der die gesammelten Forschungsergebnisse des Projektes, der Öffentlichkeit vermittelt werden.
| Origin | Count |
|---|---|
| Bund | 116 |
| Type | Count |
|---|---|
| Förderprogramm | 116 |
| License | Count |
|---|---|
| offen | 116 |
| Language | Count |
|---|---|
| Deutsch | 115 |
| Englisch | 5 |
| Resource type | Count |
|---|---|
| Keine | 42 |
| Webseite | 74 |
| Topic | Count |
|---|---|
| Boden | 76 |
| Lebewesen und Lebensräume | 84 |
| Luft | 71 |
| Mensch und Umwelt | 116 |
| Wasser | 57 |
| Weitere | 116 |