Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.
Die Messstelle Transekt 31 (Messstellen-Nr: 108368) befindet sich im Gewässer Chiemsee. Die Messstelle dient der Überwachung des biologischen Zustands.
Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.
Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.
Mikroorganismen sind im Boden, in kryptogamen Gemeinschaften und in der Atmosphäre von zentraler Bedeutung. Verschiedene Spezies von Bakterien, Pilzen, Flechten und Pollen wurden bereits als Eiskeime, welche eine Eisbildung bei relativ hohen Temperaturen initiieren können, identifiziert, und besonders biologische Bestandteile aus dem Boden sind eine vermutlich bedeutsame Quelle atmosphärischer Eiskeime. Die genauen Quellen biologischer Eiskeime in der Atmosphäre sind jedoch kaum bekannt, obwohl ein potentieller Beitrag dieser, zur Eis- und Niederschlagsbildung mittlerweile von verschiedenen Studien untermauert wird. Aktuelle Untersuchungen verschiedener Boden- und Luftproben zeigen Hinweise, dass verschiedene eisaktive Pilze unterschiedlicher Phyla nicht nur im Boden und in der Luft vorhanden sind, sondern auch häufig in der kultivierbaren Fraktion vorkommen können. Aus diesem Grund befasst sich das vorgeschlagene Projekt mit der Suche nach weiteren bisher unbekannten eisaktiven Mikroorganismen und Bestandteilen aus dem Boden, von Pflanzen und kryptogamen Gemeinschaften und mit der Erforschung ihres Einflusses auf die Eiskeimaktivität des Bodens. Die nötigen Methoden für ein Screening verschiedenster Kulturen z.B. von Cyanobakterien sind in unserem Labor gut etabliert. Zudem sollen die jeweiligen Eiskeime der neu gefundenen eisaktiven Organismen auf molekularer Ebene charakterisiert werden.
Intrazaelulaere Kationenverteilung bevorzugt ganz stark den Zellkern. Dort ionenbindende Systeme nachgewiesen: Rueckwirkung auf elektrochemische Effekte. Saeugetierzellen in Zellkultur auf extrem hohe NaCl-Konzentration adaptiert, massive Veraenderung biochemischer Zell-Leistungen erzeugt.
Das hier vorgeschlagene Projekt, RP6 in INUIT-2, zielt darauf hin, fundamentales Prozessverständnis in Bezug auf heterogene Eisnukleation zu erzielen, und hier besonders auf die Rolle von biogenen Eiskeimen und von Eiskeimen die aus Mischungen von biogenem und mineralischem Material bestehen. Der Leipzig Aerosol Cloud Interaction Simulator (LACIS) wird dazu verwendet werden, das Immersionsgefrierverhalten einer Reihe von verschiedenen Eiskeimen zu untersuchen, darunter biogene (von Pilzen stammende) Eiskeime, solche die aus einer Mischung von biogenem und mineralischem Material bestehen wie Bodenstäube und Proben die innerhalb von INUIT-2 als Test-Materialen verwendet werden. Letztere werden von verschiedenen Gruppen von innerhalb und außerhalb von INUIT vermessen werden, und die Ergebnisse werden Vergleichen unterzogen werden, ähnlich denen, die bereits für einfachere Test-Materialien in INUIT-1 erfolgreich durchgeführt worden sind. Für die Eiskeime, die zur Untersuchung in RP6 vorgeschlagen werden, wird in sinnvollen und machbaren Fallen eine Oberflächenbehandlung durchgeführt werden, mit reaktiven und mit chemisch inerten Substanzen, deren Einfluss auf die Eiskeimfähigkeit dann untersucht wird. Wie bereits in früheren LACISStudien dokumentiert, sind kontrollierte Oberflächenbehandlungen ein ausgezeichnetes Instrument um zu ermitteln, was dazu führt, dass ein Partikel ein effektiver Eiskeim ist. Zusätzlich erhellen diese Untersuchungen den Effekt der Alterung auf die Eiskeime. Es ist auch geplant, die Messungen auszuweiten, hin zu Bedingungen unter denen eine Untersättigung bezüglich Wasserdampf vorliegt. Es soll untersucht werden in wie weit sich die Eiskeimbildung unter diesen Bedingungen verhält wie es im Fall von Immersionsgefrieren in konzentrierten Lösungen zu erwarten wäre. Von all den experimentell erhaltenen Daten werden verschiedene Parametrisierungen abgeleitet, sowohl zeit-abhängige als auch zeit-unabhängige, die dann der Wissenschaftsgemeinschaft für die weitere Verwendung in Modellen zur Verfügung gestellt werden. Die hier vorgeschlagenen Studien werden die bereits erfolgreich an LACIS während INUIT-1 durchgeführten Arbeiten ergänzen, da die Arbeiten in INUIT-1 stärker auf die Untersuchung reiner Mineralstäube und reiner biogener Substanzen hinzielten. Die Untersuchung von komplexeren und entsprechend mehr atmosphärenrelevanten Eiskeimen wird signifikant dazu beisteuern, atmosphärische Eiskeimbildung generell besser zu verstehen, und die entsprechenden Beiträge von mineralischen und biogenen Substanzen zu quantifizieren.
Die Messstelle Transekt 24 (Messstellen-Nr: 108334) befindet sich im Gewässer Chiemsee. Die Messstelle dient der Überwachung des biologischen Zustands.
Die Messstelle Br. Waldrand Kochheim (Messstellen-Nr: 96513) befindet sich im Gewässer Schornreuter Kanal. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
Funds for the central coordination of the research unit 'INUIT' (Ice Nucleation research UnIT) are requested within this proposal. The project serves the coordination and administration of the research unit as well as the promotion of cooperation and communication among the individual scientific projects of the unit. An annual status seminar is organized and conducted within this project. The funds for measures to promote gender equality are managed and measures for training of young researchers are coordinated. Within the project special sessions at international conferences or publication of special issues are initiated. A central data base to store and provide the data from all the various field and laboratory activities to all members of the research unit is maintained within the project. A comprehensive inter-comparison of the results of the ice nucleating properties of the common set of test aerosols studied by the various methods is conducted. An INUIT web page is set up and maintained. To support the INUIT spokesperson in conducting these tasks, staffing for a halftime position of a scientific administrator is applied for.
Origin | Count |
---|---|
Bund | 72 |
Land | 8 |
Type | Count |
---|---|
Förderprogramm | 64 |
Text | 2 |
unbekannt | 8 |
License | Count |
---|---|
geschlossen | 3 |
offen | 71 |
Language | Count |
---|---|
Deutsch | 61 |
Englisch | 33 |
Resource type | Count |
---|---|
Datei | 6 |
Dokument | 1 |
Keine | 58 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 45 |
Lebewesen & Lebensräume | 74 |
Luft | 41 |
Mensch & Umwelt | 74 |
Wasser | 46 |
Weitere | 74 |