Das Projekt "Mechanismen der Dynamik des pflanzlichen Blatt- und Wurzelwachstums" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Chemie und Dynamik der Geosphäre ICG-3: Phytosphäre.Wachstum ist ein zentraler Prozess pflanzlichen Lebens, der sich durch eine komplexe raumzeitliche Organisation auszeichnet. Neue methodische Entwicklungen ermöglichen die Verknüpfung mechanistischer Prozesse mit der makroskopischen Wachstumsdynamik. An Modellarten soll (1) die raum-zeitliche Dynamik des Expansionswachstum im Tagesgang und bei Änderungen von Umweltbedingungen charakterisiert werden. Kartierungen des Expansionswachstums dikotyler Blätter bei verschiedenen Lichtperioden untersuchen die Kontrolle der Tagesrhythmik durch endogene Rhythmen. Raum-zeitliche Analysen der Änderungen der Expansionsrate entlang der Wurzelspitze bei kurzfristig variierten Stickstoffversorgungen und Temperaturen studieren den Einfluss wichtiger Umweltfaktoren auf die Organisation der Wachstumszone. (2) Auf Gewebeebene wird die Rolle von Blattadern bei der Kontrolle der Expansion und die Biomechanik von durch Wachstum verursachten 3-D-Bewegungen analysiert. (3) Raum-zeitliche Kartierung der Verteilung von Zellexpansion immobilisierter und im Gewebeverband eingegebener Zellen soll den Einfluss des Gewebeverbands auf das Expansionswachstum von Zellen klären. Eine Methode zur raum-zeitlichen Analyse der Zellteilung in intakten Wurzelspitzen sollen durch Untersuchungen transgener Pflanzen mit digitaler Bildsequenzanalyse entwickelt werden. (4) Die Relevanz biochemischer und molekularer Prozesse für die Blattexpansion wird durch raum-zeitliche Korrelation von Osmotika und Turgor sowie von Eigenschaften der Zellwand - insbesondere im Zusammenhang mit Expansin - mit dynamischen Karten der Expansion identifiziert.
Das Projekt "Entwicklung von Mikrosensoren zur impedanzspektroskopischen Untersuchung der Kambialaktivität von Fichte (Picea abies)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Institut für Waldwachstum, Abteilung Waldwachstum.Im beantragten Forschungsprojekt werden Mikrosensoren entwickelt, die geeignet sind, die Wachstumsaktivität in der Kambialregion lebender Bäume auf dem Niveau wenige Zellen umfassender Gewebeverbände direkt, zeitnah und zerstörungsarm zu erfassen. Das Sensorkonzept basiert auf Methoden der Impedanzspektroskopie, einem in der Biologie etablierten Analyseverfahren, mit dem der frequenzabhängige komplexe Wechselstromwiderstand des Gewebes bestimmt wird. Die charakteristischen elektrischen Parameter gehen in die Modellierung eines Ersatzschaltbildes en, womit sich der aktuelle Zustand des Gewebes mit seinen resistiven und kapazitiven Eigenschaften darstellen und beschreiben lässt. Die Elektroden werden so dimensioniert, dass die aktive Kambialregion (Kambium mit lebendem Phloem und Xylem) möglichst exakt erfasst wird und charakteristische, gewebespezifische Zeitkonstanten bestimmt werden können. Damit können die Zellteilungs- und Ausdifferenzierungsvorgänge während der Wachstumsphase kontinuierlich und zeitlich hochaufgelöst beobachtet werden. Die Entwicklung dieser Messmethodik ist die Grundlage für die später angestrebte Anwendung im Umweltmonitoring und wird die Kenntnisse über die Steuerung der Wuchsreaktionen von Waldbäumen auf Umwelteinflüsse deutlich erweitern.
Das Projekt "Alternativmethoden : Remis3R - Reduzierung von Tierversuchen durch Validierung eines kombinierten 3D Gewebe-in vitro/in silico-Lungen-Tumormodells in der onkologischen Forschung und Entwicklung, Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Charles River Discovery Research Services Germany GmbH.In der Onkologie scheitern über 90 % aller in der Präklinik wirksamen Substanzen in der Klinik. Am Lehrstuhl für Tissue Engineering und Regen. Med. (Uni-Klinikum Würzburg) werden humane dreidimensionale (3D) -Tumormodelle (OncoVaSc™) auf einer dezellularisierten Schweinedarm-Matrix (BioVaSc™) entwickelt. Diese spiegeln histologisch und durch eine geringere Teilungsrate die Tumor-Situation im Patienten besser wider. So zeigt unser 3D Lungentumormodell ein verbessertes Ansprechen auf die in der Klinik gebräuchliche anti-EGFR Therapie bei EGFR-Mutation. Weiterhin konnten wir auch eine erhöhte Chemoresistenz bei KRAS-Mutation zeigen, die klinischen Studien entspricht. Vorhabensziel: Durch eine in vitro/in silico fokussierte Vorauswahl von Substanzen und ihrer Kombinationen für die in vivo Testung sollen hier Tierversuche erheblich reduziert werden (50-90%; Refine und Reduce). Weiterhin soll unser Modell durch Vergleiche mit der Klinik und dem Tiermodell soweit validiert werden, dass das Modell für die Vorklinik durch die Firma Oncotest (Freiburg) implementiert werden kann und dadurch Tierversuche in der Wirksamkeitstestung ersetzt werden können (Replace). Parameter wie Apoptose, Proliferation und Signalwegs-Aktivierung beschreiben Ursachen für ein Therapie-Ansprechen oder Versagen. Diese werden in bioinformatische Modelle integriert (Uni Würzburg) und für Wirksamkeitsvorhersagen von Testsubstanzen und Kombinationen genutzt, die über die in vitro Testung zur Verfeinerung des in silico Modells führen. Zur Validierung werden die Ergebnisse aus dem in vitro und in silico Modell mit Ergebnissen aus Tiermodellen bei Oncotest und aus der Klinik verglichen. Neben der Testung von in silico Vorhersagen bei Resistenz von Tumoren mit EGFR- oder KRAS-Mutation, wird auch der klinisch relevante Biomarker ALK-EML untersucht und Gewebemodelle mit aus PDX-Modellen (patient derived xenografts) hergeleiteten Primärzellen aufgebaut und getestet.
Das Projekt "Teilprojekt 2^Alternativmethoden : Remis3R - Reduzierung von Tierversuchen durch Validierung eines kombinierten 3D Gewebe-in vitro/in silico-Lungen-Tumormodells in der onkologischen Forschung und Entwicklung^Teilprojekt 3, Teilprojekt 1" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin.In der Onkologie scheitern über 90 % aller in der Präklinik wirksamen Substanzen in der Klinik. Am Lehrstuhl für Tissue Engineering und Regen. Med. (Uni-Klinikum Würzburg) werden humane dreidimensionale (3D) -Tumormodelle (OncoVaSc™) auf einer dezellularisierten Schweinedarm-Matrix (BioVaSc™) entwickelt. Diese spiegeln histologisch und durch eine geringere Teilungsrate die Tumor-Situation im Patienten besser wider. So zeigt unser 3D Lungentumormodell ein verbessertes Ansprechen auf die in der Klinik gebräuchliche anti-EGFR Therapie bei EGFR-Mutation. Weiterhin konnten wir auch eine erhöhte Chemoresistenz bei KRAS-Mutation zeigen, die klinischen Studien entspricht. Vorhabensziel: Durch eine in vitro/in silico fokussierte Vorauswahl von Substanzen und ihrer Kombinationen für die in vivo Testung sollen hier Tierversuche erheblich reduziert werden (50-90%; Refine und Reduce). Weiterhin soll unser Modell durch Vergleiche mit der Klinik und dem Tiermodell soweit validiert werden, dass das Modell für die Vorklinik durch die Firma Oncotest (Charles River, Freiburg) implementiert werden kann und dadurch Tierversuche in der Wirksamkeitstestung ersetzt werden können (Replace). Bei uns gemessene Parameter wie Apoptose, Proliferation und Signalwegs-Aktivierung beschreiben Ursachen für ein Therapie-Ansprechen oder Versagen. Diese werden in bioinformatische Modelle integriert (Uni Würzburg) und für Wirksamkeitsvorhersagen von Testsubstanzen und Kombinationen genutzt, die über die in vitro Testung zur Verfeinerung des in silico Modells führen. Zur Validierung werden die Ergebnisse aus dem in vitro und in silico Modell mit Ergebnissen aus Tiermodellen bei Oncotest und aus der Klinik verglichen. Neben der Testung von in silico Vorhersagen bei Resistenz von Tumoren mit EGFR- oder KRAS-Mutation, wird auch der klinisch relevante Biomarker ALK-EML untersucht und Gewebemodelle mit aus PDX-Modellen (patient derived xenografts) hergeleiteten Primärzellen aufgebaut und getestet.
Das Projekt "Alternativmethoden : Remis3R - Reduzierung von Tierversuchen durch Validierung eines kombinierten 3D Gewebe-in vitro/in silico-Lungen-Tumormodells in der onkologischen Forschung und Entwicklung^Teilprojekt 3, Teilprojekt 2" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Würzburg, Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Bioinformatik.In der Onkologie scheitern über 90 % aller in der Präklinik wirksamen Substanzen in der Klinik. Am Lehrstuhl für Tissue Engineering und Regen. Med. (Uni-Klinikum Würzburg) werden humane dreidimensionale (3D) -Tumormodelle (OncoVaSc™) auf einer dezellularisierten Schweinedarm-Matrix (BioVaSc™) entwickelt. Diese spiegeln histologisch und durch eine geringere Teilungsrate die Tumor-Situation im Patienten besser wider. So zeigt unser 3D Lungentumormodell ein verbessertes Ansprechen auf die in der Klinik gebräuchliche anti-EGFR Therapie bei EGFR-Mutation. Weiterhin konnten wir auch eine erhöhte Chemoresistenz bei KRAS-Mutation zeigen, die klinischen Studien entspricht. Vorhabensziel: Durch eine in vitro/in silico fokussierte Vorauswahl von Substanzen und ihrer Kombinationen für die in vivo Testung sollen hier Tierversuche erheblich reduziert werden (50-90%; Refine und Reduce). Weiterhin soll unser Modell durch Vergleiche mit der Klinik und dem Tiermodell soweit validiert werden, dass das Modell für die Vorklinik durch die Firma Oncotest (Freiburg) implementiert werden kann und dadurch Tierversuche in der Wirksamkeitstestung ersetzt werden können (Replace). Parameter wie Apoptose, Proliferation und Signalwegs-Aktivierung beschreiben Ursachen für ein Therapie-Ansprechen oder Versagen. Diese werden in bioinformatische Modelle integriert (Uni Würzburg) und für Wirksamkeitsvorhersagen von Testsubstanzen und Kombinationen genutzt, die über die in vitro Testung zur Verfeinerung des in silico Modells führen. Zur Validierung werden die Ergebnisse aus dem in vitro und in silico Modell mit Ergebnissen aus Tiermodellen bei Oncotest und aus der Klinik verglichen. Neben der Testung von in silico Vorhersagen bei Resistenz von Tumoren mit EGFR- oder KRAS-Mutation, wird auch der klinisch relevante Biomarker ALK-EML untersucht und Gewebemodelle mit aus PDX-Modellen (patient derived xenografts) hergeleiteten Primärzellen aufgebaut und getestet.
Das Projekt "Teilprojekt B^NeuroRad: Ein Ansatz zur Bewertung neurologischer Strahlenschäden^Teilprojekt D, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: GSI Helmholtzzentrum für Schwerionenforschung GmbH.In diesem Projekt soll die strahlen- und neurobiologische Expertise des Darmstädter Kompetenz-Zentrums Strahlenforschung in Zusammenarbeit mit der Uni Erlangen und der GSI Darmstadt zur Untersuchung der biologischen Wirkung geringer Dosen ionisierender Strahlung auf das sich entwickelnde Gehirn eingesetzt werden. Das langfristige Ziel des beantragten Projekts ist einerseits die Verbesserung der Risikoabschätzung für strahleninduzierte neurologische Spätfolgen und zum anderen ein erweitertes Verständnis der molekularen Mechanismen der biologischen Strahlenantwort von neuronalen Stammzellen. Dies ist besonders im Hinblick auf die steigende Anzahl diagnostischer Untersuchungen von Kleinkindern von großer gesellschaftlicher Bedeutung, aber auch notwendige diagnostische Untersuchungen an Schwangeren bedürfen einer kritischen Überprüfung. Es soll untersucht werden, inwieweit dicht und dünn ionisierende Strahlung die Fähigkeit neuronaler Stammzellen zur Selbsterneuerung und Differenzierung beeinflussten. Weiterhin sollen zytogenetische Untersuchungen durchgeführt werden, um nähere Informationen über die Genauigkeit der DNA-Reparaturprozesse nach einer Strahlenexposition zu erhalten. Als Manifestation einer fehlerhaften Reparatur werden strukturelle Chromosomenaberrationen mit Hilfe der mFISH-Technik gemessen. Da auch die Migration ein wichtiger Vorgang bei der Bildung des Nervensystems ist, soll die Fähigkeit der NSZ zu wandern in einem,,Migrationstest gemessen werden.
Das Projekt "Teilprojekt B^Teilprojekt C^Teilprojekt D^NeuroRad: Ein Ansatz zur Bewertung neurologischer Strahlenschäden, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Radiation Biology and DNA Repair, AG Löbrich.In diesem Projekt soll die strahlen- und neurobiologische Expertise des Darmstädter Kompetenz-Zentrums Strahlenforschung in Zusammenarbeit mit der Uni Erlangen und der GSI Darmstadt zur Untersuchung der biologischen Wirkung geringer Dosen ionisierender Strahlung auf das sich entwickelnde Gehirn eingesetzt werden. Das langfristige Ziel des beantragten Projekts ist einerseits die Verbesserung der Risikoabschätzung für strahleninduzierte neurologische Spätfolgen und zum anderen ein erweitertes Verständnis der molekularen Mechanismen der biologischen Strahlenantwort von neuronalen Stammzellen. Dies ist besonders im Hinblick auf die steigende Anzahl diagnostischer Untersuchungen von Kleinkindern von großer gesellschaftlicher Bedeutung, aber auch notwendige diagnostische Untersuchungen an Schwangeren bedürfen einer kritischen Überprüfung. C57/BL6-Mäuse werden zu unterschiedlichen Entwicklungszeiten (embryonal und juvenil) mit niedrigen Dosen Röntgenstrahlen bestrahlt und dessen Gehirne nach unterschiedlichen Rekonvaleszenzzeiten entnommen und die DNA Schadensreparatur, Teilungsfähigkeit, Apoptoserate und Differenzierungskapazität von neuronalen Stammzellen, Astrozyten und Gliazellen untersucht. Neben den kurzzeitigen zellulären Strahleneffekten werden langfristige Folgen auf die kognitiven Fähigkeiten der bestrahlten Mäuse untersucht, unter anderem mit modernsten bildgebenden Verfahren wie fMRT.
Das Projekt "NeuroRad: Ein Ansatz zur Bewertung neurologischer Strahlenschäden, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Zelluläre Neurophysiologie und Neurosensorik, AG Laube.In diesem Projekt soll die strahlen- und neurobiologische Expertise des Darmstädter Kompetenz-Zentrums Strahlenforschung in Zusammenarbeit mit der Uni Erlangen und der GSI Darmstadt zur Untersuchung der biologischen Wirkung geringer Dosen ionisierender Strahlung auf das sich entwickelnde Gehirn eingesetzt werden. Das langfristige Ziel des beantragten Projekts ist einerseits die Verbesserung der Risikoabschätzung für strahleninduzierte neurologische Spätfolgen und zum anderen ein erweitertes Verständnis der molekularen Mechanismen der biologischen Strahlenantwort von neuronalen Stammzellen. Dies ist besonders im Hinblick auf die steigende Anzahl diagnostischer Untersuchungen von Kleinkindern von großer gesellschaftlicher Bedeutung, aber auch notwendige diagnostische Untersuchungen an Schwangeren bedürfen einer kritischen Überprüfung. C57/BL6-Mäuse werden zu unterschiedlichen Entwicklungszeiten (embryonal und juvenil) mit niedrigen Dosen Röntgenstrahlen bestrahlt und deren Gehirne nach unterschiedlichen Rekonvaleszenzzeiten entnommen und die DNA Schadensreparatur, Teilungsfähigkeit, Apoptoserate und Differenzierungskapazität von neuronalen Stammzellen, Astrozyten und Gliazellen untersucht. Neben den kurzzeitigen zellulären Strahleneffekten werden langfristige Folgen auf die kognitiven Fähigkeiten der bestrahlten Mäuse untersucht, unter anderem mit modernsten bildgebenden Verfahren wie fMRT.
Das Projekt "VERCHROMT: Erkennung, Verarbeitung und biologische Konsequenzen von Chromatinschäden nach Teilchenbestrahlung, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Radiation Biology and DNA Repair, AG Löbrich.Der Schwerpunkt des Projektes liegt auf der Untersuchung der Chromatindynamik während der Homologen Rekombination in der G2-Phase und inwieweit der Chromatinstatus die Kontrolle des Zellzyklus beeinträchtigt. Es soll somit ein Beitrag zum besseren Verständnis der Entstehung von Chromosomenaberrationen und chromosomalen Instabilitäten geleistet werden. Ein weiterer Aspekt des Projekts soll auf der Untersuchung der HR-assoziierten Vorgänge in der Mitose liegen. Hierbei stellt sich die Frage, welche HR-Intermediate die Mitose durchlaufen und welches Schicksal diese Zellen im darauf folgenden Zellzyklus erfahren. Begonnen wird mit der Charakterisierung von Chromatinremodellierern während der HR mittels zellbiologischer, molekularbiologischer und biochemischer Methoden. Parallel dazu wird die Herstellung von Knock-out Zelllinien, sowie die Expression und Aufreinigung der zu untersuchenden Proteine durchgeführt. Im nächsten Schritt ist die Etablierung und Durchführung von in-vitro Studien zur Chromatin-remodellierenden Aktivität vorgesehen. Abschließend soll der Einfluss der Chromatinremodellierer und somit des Chromatinstatus auf die Sensitivität des G2/M Checkpoints untersucht werden. Diese Untersuchungen umfassen zudem die Analyse von strahleninduzierten Chromosomenaberrationen.
Das Projekt "Bruteier zur Definition von Tumorstammzell Markern und für personalisierte Therapiestudien" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Heidelberg, Universitätsklinikum Heidelberg, Experimentelle Chirurgie, Arbeitsgruppe Molekulare OnkoChirurgie.Neue Behandlungsansätze für das Pankreaskarzinom zielen auf die Zerstörung der Tumorstammzellen, da diese konventionelle Chemo- und Radiotherapien überleben. Um die wirksamste Therapieoption für den einzelnen Patienten zu testen transplantieren wir Gewebestückchen des frisch resezierten Patiententumors auf immundefiziente Mäuse. Dadurch entwickelt sich ein Abbild des Patiententumors, an dem ausprobiert werden kann, welche Therapie für diesen bestimmten Tumor am besten ist. Allerdings sind diese Tests schmerzhaft für die Tiere und eine Testserie kommt auf 21.000 EUR. Daher möchten wir menschliches Tumorgewebe künftig auf bebrüteten Hühnereiern wachsen lassen, da dies den Embryonen keine Schmerzen verursacht und die Kosten einer Testserie auf 7.000 EUR reduziert werden können. Weil Embryonen nicht als Tiere betrachtet werden ersetzt und reduziert dieses Verfahren Tierversuche, was den Förderzielen 'Replace' und 'Reduce' entspricht. In Vorstudien ist es uns bereits gelungen, Gewebe von Patiententumoren auf Bruteiern zu züchten. Zur Therapievorhersage müssen wir das System optimieren und wissenschaftlich absichern. Es werden 10 Patiententumore auf Bruteier gebracht, gefolgt von mehreren Subtransplantationen, Anreicherung und Nachweis der Tumorstammzellen, Therapieoptimierungsstudien und Korrelation der Ergebnisse zu Mausstudien und zur Prognose der Patienten.
Origin | Count |
---|---|
Bund | 68 |
Type | Count |
---|---|
Förderprogramm | 68 |
License | Count |
---|---|
offen | 68 |
Language | Count |
---|---|
Deutsch | 64 |
Englisch | 8 |
Resource type | Count |
---|---|
Keine | 44 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 29 |
Lebewesen & Lebensräume | 65 |
Luft | 29 |
Mensch & Umwelt | 67 |
Wasser | 28 |
Weitere | 68 |