Ziel des Vorhabens ist die Entwicklung von Verfahren zur Herstellung von Aerogelen mittels aus Altholz gewonnener Rohstoffe (Cellulose, Lignin, Hemicellulose). Aus den Aerogelen werden Dämmstoffe und/oder schadstoffabsorbierende Filter hergestellt, aus denen nach Ende der Gebrauchsdauer wieder die genannten Rohstoffe gewonnen werden können (Design for Recycling). Funktionstüchtige Verfahren sollen dafür so weit entwickelt werden, dass Demonstratoren im Labor hergestellt und deren Eigenschaften untersucht werden können (TRL 4). Zusätzlich werden beispielhaft weitere Varianten aus nachwachsenden Rohstoffen, im Folgenden NaWaRos genannt, aufgezeigt. Diese Stoffe können auch aus Abfällen oder Produktionsresten verschiedener Herstellungsverfahren gewonnen werden. Ein erstes Ziel des Projektes ist es zunächst, diejenigen Rohstoffe zu finden, die sich für eine wirtschaftliche Herstellung von Aerogelen mit vermarktungsfähigen Eigenschaften am besten eignen. Anschließend sind die entsprechenden Herstellungsverfahren auf die Verwendung dieser Rohstoffe anzupassen. Verfahren werden entwickelt, um aus diesen Aerogelen nach Gebrauch wieder die Rohstoffe zu erzeugen, die zu deren Produktion verwendet wurden, z.B. Cellulose oder Lignin. Dabei ist darauf zu achten, dass keine durch Filterung oder Sekundärkontamination adsorbierten Stoffe im neuen Produkt verbleiben. Die Entwicklung der Herstellverfahren erfolgt zunächst an frischen Grundmaterialien. Zu einem späteren Zeitpunkt werden die Verfahren dann auf Ihre Eignung zur Verwendung der vom WKI gelieferten, aus den Abfällen gewonnen Rohstoffe geprüft.
Cellulose stellt den am häufigsten vorkommenden Naturstoff unseres Planeten dar. Mit einer pflanzlichen Weltjahresproduktion von ca. 180 Milliarden Tonnen (Engelhardt, j. Carbohydr. Eur. 12, 5-14 (1995)) ist Cellulose der bedeutendste nachwachsende Rohstoff. Dieses Biopolymer findet außer in der Papier-, Pharma- und Textilindustrie in vielen anderen Bereichen (z.B. Medizin, Kosmetik, Kunststoff-Industrie) reichliche Verwendung. Trotz der großen wirtschaftlichen Bedeutung und über drei Jahrzehnten intensiver Forschung ist bisher nicht bekannt, wie Cellulose in der Pflanze gebildet wird. Informationen über die Gene und die dazugehörigen Enzyme, die die Cellulose synthetisieren, würden neue Möglichkeiten eröffnet bis hin zu transgenen Pflanzen mit erhöhtem Cellulosegehalt, einer verbesserten Qualität, aber auch der Entwicklung ganz neuer Herbizide, die gezielt die Cellulosebiosynthese z. B. von Unkräutern inhibieren können. Die Zielsetzung dieses Projektes ist es, die Proteine die an der Cellulosesynthese beteiligt sind, unter Aktivitätserhalt zu isolieren und zu charakterisieren sowie die entsprechenden Gene zu identifizieren, um so erstmals den molekularen Mechanismus der pflanzlichen Cellulosebiosynthese aufzuklären.
Versuchsziel: Mit dem Versuch wird geprüft, ob sich eine unterschiedliche N-Nachlieferung auch dann in entsprechenden extrahierbaren organischen N-Gehalten widerspiegelt, wenn der Humusgehalt im Boden ähnlich hoch ist. Hintergrundinformation: Für die Bestimmung der N-Nachlieferung gibt es noch keine sichere Methode. Auch die weit verbreitete EUF-Methode vermag lediglich zwischen Standorten mit stark unterschiedlichen Humusgehalten zu unterscheiden. Standorte mit etwa gleichem Humusgehalt, aber unterschiedlichem N-Nachlieferungspotential kann die Methode jedoch nicht differenzieren. Nach erfolgreichen Vorarbeiten mit der Nahinfrarotspektroskopie (NIRS) zur Analyse geringer Zellulosemengen (= leicht abbaubarer C im Boden) soll untersucht werden, ob sich das unterschiedliche N-Nachlieferungspotential von Böden eines Standortes (fast gleicher Humusgehalt) mit der NIRS besser differenzieren lässt als mit der EUF-Methode. Als weitere Methode soll die Extraktion mit CaCl2 geprüft werden.
Die Bildung der Eis Phase in der Troposphäre stellt einen wichtigen Fokus der aktuellen Atmosphärenforschung dar. Durch heterogene Nukleation entstehen bei Temperaturen oberhalb von -37°C primäre Eiskristalle an sogenannten eiskeimbildenden Partikeln (INP, engl, ice nucleating particles). Die räumliche Verteilung der INP und deren Quellen variieren stark. In der Atmosphäre finden sich INP nur in sehr geringer Anzahlkonzentration, oft weniger als ein Partikel pro Liter, und sie stellen nur eine kleine Untergruppe des gesamten atmosphärischen Aerosols dar. Ziel dieses Antrages ist es die Anzahlkonzentrationen von eiskeimbildenden Partikeln und deren Variabilität in der Atmosphäre zu messen. Außerdem sind Laborstudien geplant, in denen unser Verständnis über die chemischen und biologischen Eigenschaften der Partikel, die die Eisbildung initiieren, verbessert werden soll. Mit dem von unserer Arbeitsgruppe entwickelten Eiskeimzahler FINCH (Fast Ice Nucleaus CHamber) sollen die atmosphärischen Anzahlkonzentrationen von INP bei verschiedenen Gefriertemperaturen und Übersättigungen an mehreren Standorten gemessen werden. Die Kopplung von FINCH mit einem virtuellen Gegenstromimpaktor (CVI, engl, counter-flow virtual impactor, Kooperation mit RP2), die während lNUIT-1 entwickelt und getestet wurde, soll nun weiter charakterisiert und Messungen damit fortgesetzt werden. Bei dieser Methode werden die Eispartikel, die in FINCH gebildet werden, von den unterkühlten Tröpfchen und inaktivierten Partikeln separiert und mit weiteren Messmethoden untersucht. In Kooperation mit RP2 und RP8 planen wir hierbei die Charakterisierung der INP mittels Größen- und Aerosolmassenspektrometer sowie die Sammlung der INP auf Filtern oder Impaktorplatten zur anschließenden Analyse mit einem Elektronenmikroskop (ESEM, engl. DFG fomi 54.011 -04/14 page 3 of 6 Environmental Scanning Electron Microscopy). Die Feldmessdaten werden von umfangreichen Laborstudien an den Forschungseinrichtungen AIDA (RP6) und LACIS (RP7) ergänzt. Dort soll das Immersionsgefrieren von verschiedenen Testpartikeln aus biologischem Material (z.B. Zellulose), porösem Material (z.B. Zeolith) und Mineralstaub mit geringem organischem Anteil im Detail untersucht werden. Des Weiteren planen wir Labormessungen, bei denen eine verbesserte Charakterisierung der Messunsicherheiten von FINCH erarbeitet werden soll. Außerdem werden regelmäßige Tests und Kalibrierungen mit FINCH durchgeführt, für die Standardroutinen festgelegt werden sollen. Um die Rolle der INP bei der Wolken- und Niederschlagsbildung sowie bei den Wolkeneigenschaften abzuschätzen, werden die gewonnenen Messergebnisse am Ende als Eingabeparameter für erweiterte Wolkenmodelle (Kooperation mit WP-M) dienen.
Die LXP Group hat ein Verfahren entwickelt, bei welchem verholzte Biomasse (sog. Lignocellulose) mittels konzentrierter Säure aufgeschlossen und im Anschluss partiell ausgefällt wird. Dadurch kann die Biomasse in drei Fraktionen aufgeteilt werden. Nach der vollständigen Auswaschung aller eingesetzten Betriebs-mittel entstehen drei Produktströme:
Der chemische Aufschluss von Pflanzenfasern liefert Zellstoff, der vorwiegend aus Cellulose besteht und zentraler Rohstoff der Papierherstellung ist. 90% des weltweit erzeugten Zellstoffs wird aus Holz hergestellt. Eine effiziente Nutzung von Holz bedeutet auch die Entwicklung von Konzepten zur Verwendung von Nebenprodukten, die bei Prozessen mit dem nachwachsenden Rohstoff anfallen, wie z.B. Ligninsulfonate, die beim Zellstoffaufschluss nach dem Sulfitverfahren entstehen. Mit der Entwicklung von Ligninschäumen für die Anwendung als Kernmaterial für Stoßfänger wird eine Produktinnovation geschaffen, die dazu beiträgt, die potentielle Leistungsfähigkeit von Holz bestmöglich auszuschöpfen und ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche 'Automobil' zu entwickeln. Ligninschäume sind zwar bekannt, ein ausschließlich Lignin-basierter Schaum ist bislang nicht entwickelt. Das Ziel des Vorhabens ist es zudem, die Schäume aus ungereinigtem Ligninsulfonat zu entwickeln. Als Ligninquelle wurden Ligninsulfonate ausgewählt, da das Magnesiumbisulfit-Verfahren in Deutschland aufgrund der geringeren Geruchsbelastung im Vergleich mit dem Sulfatverfahren, in dem Kraft Lignin anfällt, weiter verbreitet ist. Auch weitere Reststoffe des Sulfitaufschlusses wie nicht aufgeschlossene Faserbündel und Spuckstoffe sollen als Verstärkung für die Schäume eingesetzt werden. Als technologisch anspruchsvolles Anwendungsbeispiel für die Automobilindustrie wurde das Kernmaterial für vordere PKW-Stoßfänger, auch als Stoßstange bezeichnet, ausgewählt. Vorrangig werden hier bislang Formteile aus petrochemisch-basierten Partikelschäumen wie expandiertem Polypropylen (EPP) eingesetzt. Ziel ist es, ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche der Automobilindustrie zu entwickeln.
Der chemische Aufschluss von Pflanzenfasern liefert Zellstoff, der vorwiegend aus Cellulose besteht und zentraler Rohstoff der Papierherstellung ist. 90% des weltweit erzeugten Zellstoffs wird aus Holz hergestellt. Eine effiziente Nutzung von Holz bedeutet auch die Entwicklung von Konzepten zur Verwendung von Nebenprodukten, die bei Prozessen mit dem nachwachsenden Rohstoff anfallen, wie z.B. Ligninsulfonate, die beim Zellstoffaufschluss nach dem Sulfitverfahren entstehen. Mit der Entwicklung von Ligninschäumen für die Anwendung als Kernmaterial für Stoßfänger wird eine Produktinnovation geschaffen, die dazu beiträgt, die potentielle Leistungsfähigkeit von Holz bestmöglich auszuschöpfen und ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche 'Automobil' zu entwickeln. Ligninschäume sind zwar bekannt, ein ausschließlich Lignin-basierter Schaum ist bislang nicht entwickelt. Das Ziel des Vorhabens ist es zudem, die Schäume aus ungereinigtem Ligninsulfonat zu entwickeln. Als Ligninquelle wurden Ligninsulfonate ausgewählt, da das Magnesiumbisulfit-Verfahren in Deutschland aufgrund der geringeren Geruchsbelastung im Vergleich mit dem Sulfatverfahren, in dem Kraft Lignin anfällt, weiter verbreitet ist. Auch weitere Reststoffe des Sulfitaufschlusses wie nicht aufgeschlossene Faserbündel und Spuckstoffe sollen als Verstärkung für die Schäume eingesetzt werden. Als technologisch anspruchsvolles Anwendungsbeispiel für die Automobilindustrie wurde das Kernmaterial für vordere PKW-Stoßfänger, auch als Stoßstange bezeichnet, ausgewählt. Vorrangig werden hier bislang Formteile aus petrochemisch-basierten Partikelschäumen wie expandiertem Polypropylen (EPP) eingesetzt. Ziel ist es, ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche der Automobilindustrie zu entwickeln.
Origin | Count |
---|---|
Bund | 1056 |
Land | 12 |
Wissenschaft | 16 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 51 |
Daten und Messstellen | 12 |
Förderprogramm | 972 |
Gesetzestext | 38 |
Text | 31 |
Umweltprüfung | 1 |
unbekannt | 17 |
License | Count |
---|---|
geschlossen | 86 |
offen | 989 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 1008 |
Englisch | 141 |
Resource type | Count |
---|---|
Archiv | 10 |
Bild | 1 |
Datei | 16 |
Dokument | 24 |
Keine | 673 |
Webseite | 382 |
Topic | Count |
---|---|
Boden | 1084 |
Lebewesen und Lebensräume | 820 |
Luft | 399 |
Mensch und Umwelt | 1084 |
Wasser | 336 |
Weitere | 998 |