Die Holcim (Süddeutschland) GmbH ist spezialisiert auf die Herstellung und den Vertrieb von Baustoffen. Das Unternehmen bietet ein breites Sortiment an Zement, Gesteinskörnungen, Beton sowie Dienstleistungen für Bauvorhaben an. Der Prozess der Zementklinkerherstellung ist sehr energieintensiv und verursacht sowohl brennstoff- als auch rohstoffbedingte Emissionen. Letztere resultieren aus den chemischen Zusammensetzungen der verwendeten Rohstoffe wie Kalkstein, Sand, Ton und z.B. eisenhaltigen Zusatzstoffen. Neben Staub sind insbesondere gasförmige Abgaskomponenten, wie NO X , NH 3 und SO X , organische Verbindungen sowie Schwermetalle von Bedeutung. In der 17. BImSchV, der für Zementwerke maßgeblichen Immissionsschutzregelung, gibt es jedoch für eine Vielzahl von Parametern (SO X , organische Gesamtemissionen, NH 3 , Hg) die Möglichkeit, rohmaterialbedingte Ausnahmen von den allgemeinen Grenzwerten zuzulassen. Am Standort Dotternhausen gelten derzeit Ausnahmen für die Emissionsgrenzwerte von CO, VOCs und NH 3 , da bisher keine Reduzierung der rohstoffbedingten Emissionen implementiert ist. Zur Minderung von NO X -Emissionen wird im Zementwerk Dotternhausen aktuell das Verfahren der selektiven nichtkatalytischen Reduktion (SNCR) betrieben. Im Rahmen des Vorhabens soll im Zementwerk der HOLCIM Süddeutschland GmbH in Dotternhausen eine Anlage zur kombinierten Abgasreinigung errichtet werden. Damit sollen zum einen die Emissionen des Zementwerks deutlich reduziert (z.B. NO X , NH 3 , VOCs, CO) und zum anderen der fossile Energiebedarf für die Emissionsminderung in Zementwerken deutlich gesenkt werden. Die Anlage besteht aus einem Katalysator zur selektiven katalytischen Reduktion (SCR), der mit einem Oxidationskatalysator in einer Funktionseinheit kombiniert wird. Der Oxidationskatalysator wird erstmalig in der Zementindustrie eingesetzt. Der Einsatz von Oxidationskatalysatoren wird seit langem als vielversprechende Technologie für den Einsatz in der Zementindustrie gehandelt, aufgrund des hohen technischen Risikos aber bisher noch nicht eingesetzt. Durch diese Anlagenkombination werden zukünftig sowohl brennstoffbedingte als auch rohmaterialbedingte Emissionen eingespart und gezielt insbesondere NO X , NH 3 , organische Gesamtemissionen und besonders problematische Einzelverbindungen (z. B. Benzol, PAKs, PCB) sowie CO gemindert. So sollen bei Umsetzung des Projektes im Dauerbetrieb Emissionswerte für Ammoniak unterhalb der allgemeinen gesetzlichen Anforderungen eingehalten werden: 10 Milligramm pro Kubikmeter statt 30 Milligramm pro Kubikmeter für Ammoniak im Tagesmittel. CO wird nahezu vollständig zu CO 2 oxidiert. Zusätzlich werden die Emissionen organischer Verbindungen soweit reduziert, dass keine nach 17. BImSchV allgemein zulässige rohmaterialbedingte Ausnahme für organische Emissionen erforderlich ist und ein Wert unterhalb von 10 Milligramm pro Kubikmeter im Dauerbetrieb und allen Betriebszuständen eingehalten wird. Auch bei relevanten organischen Einzelkomponenten (z. B. Benzol, Dioxine/Furane, PCB) wird eine nahezu vollständige Zerstörung erwartet. Damit werden bei erfolgreicher Umsetzung des Projektes die Emissionen unterhalb des Emissionsniveaus der aktuell fortschrittlichsten Anlagen liegen. Ziel ist, nach erfolgreicher Umsetzung des Projektes auf die Inanspruchnahme rohmaterialbedingter Ausnahmen für NH 3 , organische Gesamtemissionen und CO verzichten zu können. Darüber hinaus kann bei der innovativen Technologiekombination aus selektiver katalytischer Reduktion und einem Oxidationskatalysator auf den Einsatz fossiler Energieträger komplett verzichtet werden. Die geplante Anlagenkombination ist auf andere Anlagen der Zementindustrie und ggf. auch auf Unternehmen anderer Branchen übertragbar, da es sich bei dem Ofenabgas der Zementklinkerproduktion um ein sehr herausforderndes Umfeld für die Anwendung abgassensibler Minderungstechniken handelt. Die Demonstration der Funktionsfähigkeit des Verfahrens kann daher Hürden für andere Bereiche abbauen helfen. Weiterhin ist davon auszugehen, dass auch eine Nachrüstung von Oxidationskatalysatoren als eigenständiges Element in Werken mit Low-Dust-SCR-Anlagen und ggf. auch anderen SCR-Varianten zur weitergehenden Reduktion von organischen und CO-Emissionen möglich ist. Branche: Glas und Keramik, Verarbeitung von Steinen und Erden Umweltbereich: Luft Fördernehmer: Holcim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2025 Status: Laufend
Phasentransferreaktionen (Adsorption, Desorption, Oberflächenkomplexierung) bestimmen die Verteilung, den Verbleib und die Wirkung von natürlichen und anthropogenen Polyhydroxycarbonsäuren in verschiedenen Umweltkompartimenten (Sedimente, Böden, Aquifer) und in technischen Medien (Abfalldeponien, radiodaktive Endlager). Die gebildeten Oberflächenreaktionsprodukte modifizieren die physikalisch-chemischen Eigenschaften partikulärer Sorbentien und nehmen darüber Einfluss auf die Größenverteilung, die Rheologie und ggf. das Sedimentationsverhalten der Partikel. Zum Verständnis dieser Prozesszusammenhänge ist die Analyse der Mechanismen, der Stoffumsätze und der Produkte der Oberflächenreaktionen unumgänglich. Das Forschungsvorhaben behandelt grundlagenorientierte Fragestellungen (Parameter der Verteilungsgleichgewichtseinstellung hochhydrophiler niedermolekularer organischer Komplexbildner, Struktur und Stabilität von Oberflächenreaktionsprodukten, Reaktionsbeeinflussung durch physikalisch-chemische Milieufaktoren, molekülstrukturelle Faktoren der Festphasenaffinität), aus deren Verknüpfung mit Umweltgefährdungsaspekten (Schadstoffeinbettung im Deponie- und Endlagerbereich, Metall- und Radionuklidmobilisierung, Grundwassergefährdung) sich zusätzlicher Forschungsbedarf ergibt.
Since 1999, the Geologic Survey of Baden-Württemberg publishes a statewide geological map series 1 : 50 000 "Karte der mineralischen Rohstoffe 1 : 50 000 (KMR 50)". On it, the distribution of near-surface mineral raw material prospects and occurrences (mainly) and deposits (subordinate) is shown. This continuously completed and updated map currently covers around 60% of the federal state. It is the base for the regional associations in the task of mineral planning. The prospects and occurrences are classified according to different raw material groups (e.g. raw material for crushed stone (limestone, igneous rocks, metamorphic rocks, sand and gravel), raw materials for cement, dimension stone, high purity limestone, gypsum ...). Their spatial delineation is based on various group-specific criteria such as minimum workable thickness, minimum resources, ratio overburden/workable thickness, and so on. It is assumed that they contain deposits as a whole or in parts. In the vast majority of cases, the data is not sufficient for the immediate planning of mining projects, but it does facilitate the selection of exploration areas. The name of each area (e.g. L 6926-3) consists of three parts. L = roman rnumeral fo 50, 6926 = sheet number of the topographic map 1 : 50 000, 3 = number of the area/mineral occurrence shown on this sheet. Co-occurring land-use conflicts, e.g. water protection areas and nature conservation areas, forestry and agriculture, are not taken into account in the processing of KMR 50. Their assessment is the task of land use planning, the licensing authorities and the companies interested in mining. The data is stored in the statewide raw material area database "olan-db" of the LGRB.
Bundesumweltministerin Svenja Schulze hat heute dem Vorstandsvorsitzenden der Salzgitter AG, Prof. H.J. Fuhrmann, einen Förderbescheid in Höhe von über 5 Mio. Euro für ein Projekt zur Herstellung klimafreundlichen Stahls übergeben. Im Beisein des Ministerpräsidenten des Landes Niedersachsen, Stephan Weil, fiel damit auch der offizielle Startschuss des BMU-Förderprogramms 'Dekarbonisierung in der Industrie'. Mit diesem Programm sollen schwer vermeidbare, prozessbedingte Treibhausgasemissionen in den energieintensiven Branchen wie Stahl, Zement, Kalk und Chemie durch den Einsatz innovativer Techniken möglichst weitgehend und dauerhaft reduziert werden. Bundesumweltministerin Svenja Schulze: 'Für ein klimaneutrales Deutschland brauchen wir eine Industrie, die ohne fossile Energie- und Rohstoffe auskommt. Mit unserem neuen Dekarbonisierungsprogramm fördern wir eine grundlegende Neuausrichtung der Produktionsprozesse. Der Klimaschutz wird so zum Innovationstreiber für die Wirtschaft, macht den Industriestandort Deutschland zukunftsfähig und erhält hochqualifizierte Arbeitsplätze. Das Projekt in Salzgitter ist ein wichtiger, erster Schritt in diese Richtung, dem weitere folgen werden. Es zeigt auch, dass wir den Ausbau der erneuerbaren Energien und den Markthochlauf von grünem Wasserstoff beschleunigen müssen, damit wir unsere anspruchsvollen Ziele erreichen können.' Die Anlage der Salzgitter Flachstahl GmbH mit einem Gesamtinvestitionsvolumen von rund 13 Mio. Euro soll innerhalb der nächsten zwei Jahre in Betrieb gehen und zeigen, wie die sukzessive Umstellung eines integrierten Hochofenwerks auf die CO2-arme Stahlerzeugung erfolgen kann. Mit dem von der Salzgitter AG entwickelten Verfahren wird die konventionelle Roheisengewinnung im Hochofen auf die emissionsarme Direktreduktion umgestellt. Beim Einsatz von Wasserstoff aus erneuerbaren Energien wird so die Herstellung von grünem Stahl ermöglicht. Innovative Projekte wie dieses sollen auch als Vorbilder dienen und als Multiplikatoren auf die ganze Branche ausstrahlen. Im Projekt ProDRI soll der flexible Betrieb mit Wasserstoff und Erdgas demonstriert und optimiert werden. Langfristiges Ziel von Salzgitter ist die ausschließliche Nutzung erneuerbaren Wasserstoffs zur Herstellung von grünem Stahl. Steht erneuerbarer Wasserstoff noch nicht in ausreichenden Mengen zur Verfügung, kann auch Erdgas zur Reduktion eingesetzt werden und dabei bereits erhebliche Mengen CO2 gegenüber der herkömmlichen Hochofen-Route einsparen. Die Stahlindustrie war 2019 mit über 36 Mio. Tonnen für etwa 30% der direkten Industrieemissionen in Deutschland verantwortlich. Mit dem Förderprogramm Dekarbonisierung im Industriesektor wird eine Maßnahme des Klimaschutzplans 2050 sowie des Klimaschutzprogramms 2030 umgesetzt. Das BMU wird - vorbehaltlich der Verabschiedung des Bundeshaushalts in der kommenden Woche - über den Energie- und Klimafonds in den kommenden Jahren rund 2 Mrd. Euro zur Verfügung stellen. Text gekürzt
Zement wird mit Hilfe des Trocken- oder Nassverfahrens im Drehrohrofen hergestellt. Beim Nassverfahren ist der spezifische Energiebedarf zum Brennen des Klinkers ca. 40 Prozent höher als beim Trockenverfahren, da im Gegensatz zum Trockenverfahren das feuchte Vormaterial direkt in den Drehrohrofen eingebracht wird und so das Wasser im Drehrohrofen sehr energieintensiv verdampft werden muss. Eine Möglichkeit den Energiebedarf beim Nassverfahren zu senken, ist die Verbesserung des Wärmeübergangs von den heißen Rauchgasen auf das Vormaterial im Drehrohrofen, indem im Drehofen Ketten angebracht werden. Die Ketten werden im heißen Rauchgas aufgeheizt und durch die Drehbewegung des Ofens in das kältere Vormaterial gefördert, wo sie ihre Wärme entsprechend abgeben. Dadurch sind Energieeinsparungen von rd. 15 Prozent möglich. Im Rahmen dieses Forschungsprojekts soll ein mathematisches Modell, basierend auf Stoff-, Massen-, Energie- und Impulsbilanzen, zur Beschreibung des Betriebsverhaltens dieser Kettensysteme formuliert werden, um durch eine verbesserte Auslegung des Kettensystems im Drehofen den Energiebedarf und damit Umweltbelastungen und Energiekosten bei der Zementherstellung zu minimieren.
Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Für die Betonherstellung streben wir einen reaktiven Betonzusatzstoff an, der Flugasche und andere Betonzusatzstoffe vollständig substituieren und ggf. übertreffen kann. Ziel ist ein k-Wert größer als 0,4. Bei Zement ist eine Hauptbestandteilreduktion des Klinkers von 35-50% Ziel des Forschungsprojektes. Hier soll ein CEM II/B und ein CEM II/C entwickelt werden.
| Origin | Count |
|---|---|
| Bund | 739 |
| Land | 41 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 17 |
| Daten und Messstellen | 20 |
| Förderprogramm | 522 |
| Text | 216 |
| Umweltprüfung | 22 |
| unbekannt | 22 |
| License | Count |
|---|---|
| geschlossen | 114 |
| offen | 544 |
| unbekannt | 127 |
| Language | Count |
|---|---|
| Deutsch | 715 |
| Englisch | 110 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 128 |
| Datei | 127 |
| Dokument | 178 |
| Keine | 452 |
| Webdienst | 2 |
| Webseite | 158 |
| Topic | Count |
|---|---|
| Boden | 656 |
| Lebewesen und Lebensräume | 576 |
| Luft | 546 |
| Mensch und Umwelt | 785 |
| Wasser | 507 |
| Weitere | 736 |