This report summarizes the main trends and drivers of the cement sector in the time period 2005-2017 in the EU28 and provides a compilation of key figures on the cement clinker industry for selected countries. The report focuses on the developments during the third trading period of the EU ETS since 2013 and analyses the countries within the EU28 with the highest contribution to total emissions of cement clinker production: Germany, Spain, France, United Kingdom, Italy, Poland and Greece. By providing key information from past developments, this report sets a solid basis for future projections and the design of climate policy. Veröffentlicht in Climate Change | 04/2025.
<p>Die Rohstoffproduktivität stieg zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war eine Verdopplung. Dieses Ziel wurde verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird die „Gesamtrohstoffproduktivität“ abgebildet. Dieser weiterentwickelte Indikator ist Teil der Nationalen Kreislaufwirtschaftsstrategie (NKWS) von 2024.</p><p>Entwicklung der Rohstoffproduktivität</p><p>Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt.</p><p>Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele:</p><p>Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms (<a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">ProgRess</a>) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020. </p><p>Indikator "Rohstoffproduktivität"</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> ist auch in der 2024 veröffentlichten <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> neben weiteren Indikatoren und Zielen verankert.</p><p>Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a> im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum.</p><p>Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz</p><p>Zur Berechnung der Rohstoffproduktivität wird der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>) bezeichnet.</p><p>Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a> und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators.<br><br>Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen.</p><p>Entwicklung des abiotischen Direkten Materialeinsatzes</p><p>Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994.</p><p>Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 24 %. Letzte Zahlen des Statistischen Bundesamtes zeigen, dass der direkte abiotische Materialeinsatz bis 2022 mit 1.149 Mio. t. weiter leicht gesunken ist (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“).</p><p>Komponenten des abiotischen Direkten Materialeinsatzes</p><p>Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2022 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2022 um 410 Millionen Tonnen (– 37 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 45 Mio. t an (+ 11%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 38 % im Jahre 2022.</p><p>Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2022 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“):</p><p>Erfassung der indirekten Importe</p><p>Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. <br><br>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden.</p><p>Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2022 die Einfuhren an überwiegend abiotischen Fertigwaren um 114 % deutlich stärker zu, als die von <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a>. Deren Importe gingen sogar leicht zurück. Die von Rohstoffen sanken bis 2022 ebenfalls um 3 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz.</p><p>Die Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert.</p><p>Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe</p><p>Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a> abbilden – wie etwa beim <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> <strong>„Rohstoffverbrauch“</strong> (engl. „Raw Material Input“, <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird.</p><p>Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 (letztes verfügbares Jahr) stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMIabiot) um mehr als 6 %. Der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>abiot, der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um ca. 6 % (siehe Abb. „Rohstoffproduktivität“).</p><p>Bedeutung der Biomasse nimmt zu</p><p>Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden.<br><br>Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen.</p><p>Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität</p><p>Mit Verabschiedung des <a href="https://www.umweltbundesamt.de/themen/zweites-deutsches-ressourceneffizienzprogramm">2. Deutschen Ressourceneffizienzprogramms (ProgRess II)</a> und der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> wurde dem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrrohstoffeinsatz#alphabar">Primärrohstoffeinsatz</a> (<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> wird seit Veröffentlichung des <a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms III</a> ausschließlich berichtet. Der Indikator ist auch in der <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> von 2024 verankert.</p><p>Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Der Indikator wird <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-gesamtrohstoffproduktivitaet">hier</a> ausführlich vorgestellt.</p>
Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Für die Betonherstellung streben wir einen reaktiven Betonzusatzstoff an, der Flugasche und andere Betonzusatzstoffe vollständig substituieren und ggf. übertreffen kann. Ziel ist ein k-Wert größer als 0,4. Bei Zement ist eine Hauptbestandteilreduktion des Klinkers von 35-50% Ziel des Forschungsprojektes. Hier soll ein CEM II/B und ein CEM II/C entwickelt werden.
Zement angreifende chemische Stoffe im Grundwasser wie z. B. Kohlensäure, Ammonium und Sulfat können die Grenztragfähigkeit von geotechnischen Bauteilen wie Verpressanker und Pfählen reduzieren. Dies soll anhand von Versuchen und numerischen Simulationen untersucht werden. Aufgabenstellung und Ziel Bei den laufenden Projekten und Baumaßnahmen der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) ergeben sich immer wieder Schwierigkeiten, die Auswirkungen eines chemischen Angriffs auf den Mörtel bzw. Beton bei geotechnischen Elementen wie Verpressankern, Kleinverpresspfählen und Betonpfählen bezüglich der dauerhaften Tragfähigkeit realistisch zu bewerten und angemessene Anforderungen an Baustoffe und Bauweisen festzulegen. Die in der Literatur und teilweise auch im Regelwerk sowie in Zulassungen beschriebenen Lösungsansätze sind zumeist entweder nicht praxistauglich oder aufgrund der gewählten Randbedingungen bei den dokumentierten Modellversuchen nicht ausreichend realitätsnah. Im Rahmen eines in drei Teile gegliederten Gesamtvorhabens (1. Einwirkungen von chemischen Substanzen aus dem Grundwasser, 2. Widerstand des Mörtels bzw. Betons gegenüber dem chemischen Angriff, 3. Veränderung des Tragverhaltens aufgrund der Veränderung des Mörtels bzw. Betons) wird in diesem Teilprojekt 3 die Grenztragfähigkeit der geotechnischen Elemente unter der Einwirkung eines chemischen Angriffs untersucht. Ein Hauptaspekt des FuE-Vorhabens ist die Untersuchung des kalklösenden Kohlensäureangriffs auf Verpressanker. Zur Tragfähigkeit von Ankern und Verpresspfählen unter Einwirkung von kalklösender Kohlensäure sind bisher nur wenige Versuchsreihen (Manns und Lange 1993, Hof 2004, Triantafyllidis und Schreiner 2007) durchgeführt worden, welche aufgrund der differierenden Versuchsrandbedingungen nur schwer direkt vergleichbar sind. Unterschiede liegen zum Beispiel in der Größe der Ankerkörper und deren Herstellung. In allen Versuchsreihen zeigte sich in den ersten Monaten eine deutlich erkennbare Abnahme der Tragfähigkeit, die sich mit fortschreitender Dauer des chemischen Angriffs verlangsamte. Dabei variierte der Tragfähigkeitsverlust zwischen 20 und 70 Prozent. Diese divergierenden Ergebnisse für die Grenztragfähigkeit der Verpressanker sollen verifiziert und entsprechend der neuen Erkenntnisse angepasst werden. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Verpressanker und Kleinverpresspfähle werden im Rahmen von Baumaßnahmen der WSV - beispielweise bei Auftriebssicherungen von Schleusen- und Wehrsohlen, bei Rückverankerungen von Ufereinfassungen, aber auch bei der temporären Sicherung von Baugruben - verwendet. In den Fällen mit einem erhöhten chemischen Angriff aus dem Grundwasser oder dem Boden auf den Mörtel bzw. Beton dieser geotechnischen Elemente müssen diese aufgrund nicht ausreichender praxistauglicher Erkenntnisse und Lösungsansätze über die Tragfähigkeitsverluste durch kostenintensivere Konstruktionen wie z. B. Stahlrammpfähle ersetzt werden. Die Konsequenzen sind deutliche Kostensteigerungen, höhere Lärmbelästigungen, größere Erschütterungen sowie insgesamt ein gestiegener Arbeitsaufwand in Verbindung mit einer längeren Bauzeit. Untersuchungsmethoden Im Rahmen dieses Forschungs- und Entwicklungsvorhabens wird zum einen ein umfangreiches Laborprogramm mit Modellankern, bei denen baupraktische Randbedingungen wie In-situ-Spannungszustände und der Verpressvorgang berücksichtigt werden können, durchgeführt. Zum anderen findet parallel die Untersuchung an Verpressankern hinsichtlich ihrer Grenztragfähigkeit bei betroffenen Bauvorhaben der WSV statt. In Verbindung mit der Ruhr-Universität Bochum und der Firma Schudy Sondermaschinenbau erfolgte die Entwicklung eines Versuchsstandes, der im Frühjahr 2019 in Betrieb genommen wurde. Der Versuchsstand besteht insgesamt aus sieben Versuchscontainern. (Text gekürzt)
Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Der Verbundpartner Mineral- und Betonlabor GmbH (mbl) führt die Entwicklung von Betonrezepturen, in einem weiteren Schritt von spezifischen Transportbetonrezepturen unter Verwendung des reaktiven Betonzusatzstoff durch. Des Weiteren wird für die Verifizierung der Entwicklung ein Demonstratorbauteil hergestellt, an dem Festbetonuntersuchungen durchgeführt werden können. Für mbl steht die Entwicklung von Prüfmethoden für die Detektierung geeigneter Ausgangsmaterialien (Brechsande) und die Entwicklung praxisgerechter Betonzusammensetzungen mit dem reaktiven Betonzusatzstoff im Vordergrund. Die im Projekt gewonnenen Erkenntnisse in der Charakterisierung und Untersuchung von Brechsanden kann mbl für die Weiterentwicklung von Betonen auch unter Verwendung anderer Ausgangsstoffe anwenden.
Im Gesamtprojekt URBAN wird, mithilfe einer neuartigen Methode, aus Altbeton ein hydraulisch aktives Bindemittel auf Belit-basis gewonnen. Wird dieser Belit-Zement mit normalem Zement gemischt, kann ein gleichwertiges Produkt im Vergleich zu herkömmlichem Zement erreicht werden, jedoch mit stark verringertem CO2-Fußabdruck. Heutzutage werden in den meisten Fällen in der Anwendung von Zement auch Zusatzmittel wie Fließmittel und Beschleuniger eingesetzt. Allein die Fließmittel machen rund 70 % des Zusatzmittelmarktes aus. Es erscheint klar, dass der neuartige Recyclingzement ein geeignetes Fließmittel sowie einen Beschleuniger benötigt, um mit herkömmlichen Zementen auf dem Markt konkurrenzfähig zu sein. Einen etwas spezielleren Markt stellen die Betonwaren dar. Auch hierfür soll ein Zusatzmittel entwickelt werden, da hier ein wichtiges Anwendungsgebiet für die neuen RC-Zemente gesehen wird. In diesem Teilprojekt sollen diese Zusatzmittel (Fließmittel/Beschleuniger/Betonwarenhilfe) für die neuartigen Belit-Zemente entwickelt werden. Dafür werden umfangreiche Tests im Mörtel gemacht. Am Ende soll zumindest ein gut geeignetes Fließmittel und ein Beschleuniger resultieren, um den Belit-Zementen eine vergleichbare Performance im Vergleich zu herkömmlichen Zementen zu verleihen. Außerdem soll eine Betonwarenhilfe entwickelt werden. Somit stünde eine Alternative für die Betonwarenindustrie im Vergleich zu herkömmlichem Zement zur Verfügung. Dafür werden besonders anwendungsnah Gyratorprüfkörper hergestellt, um die Bedingungen im Betonwarenwerk nachstellen zu können.
Ziel des Vorhabens ist es, einen stark CO2-reduzierten, hochwertigen und ressourceneffizienten Betonkreislauf für Altbeton zu entwickeln. Dazu wird ein Belit - basierter Portlandzementklinker (RC-Belit-PZK) mit niedrigem CO2-Fußabdruck aus Betonbrechsand und weiteren kalkhaltigen primären oder sekundären Komponenten hergestellt. Freigesetztes CO2 kann abgetrennt und zur technischen Karbonatisierung von mechanisch aufbereitetem Betonbrechsand als Substitut in Zement genutzt werden. Mit dem Ziel weiteres CO2 zu binden und die betontechnischen Eigenschaften grober RC-Gesteinskörnung zu verbessern, wird eine neue Karbonatisierungstechnik im Druckreaktor entwickelt. Aus RC-Belit-PZK, Portlandzementklinker (PZK) und technisch karbonatisierten aufgemahlenen Brechsanden werden RC-Zemente mit stark reduziertem CO2-Fußabdruck formuliert. Um den erneuten Einsatz in der Produktion zu ermöglichen, werden Rezepturen für RC-Beton mit Normal- und / oder RC-Gesteinskörnung entwickelt, die auf angepassten Fließmitteln und Beschleunigersystemen basieren. Zum Projektabschluss werden Werkversuche durchgeführt, die den hochwertigen Betonkreislauf demonstrieren. Eine CO2-Reduktion um mindestens 40% für RC2-Beton im Vergleich zum Stand der Technik wird angestrebt. Die Prozesse werden aus techno-ökonomischer und ökologischer Sicht bewertet (prozessbasierte Ökobilanz/LCA). Im Rahmen der Systemanalyse werden verschiedene Anlagengrößen und Standorte über den gesamten Lebenszyklus mit dem Stand der Technik verglichen. Zusätzlich werden regulatorische Randbedingungen untersucht (z.B. Recycling-Baustoffverordnung, DIN-EN 197-1, Rechtliche Einordnung einer Anlage zur Klinkerherstellung), um Hindernisse in der Umsetzung zentraler bzw. dezentraler Konzepte zu identifizieren und konkrete Handlungsempfehlungen zur Kreislaufführung zu erarbeiten.
| Origin | Count |
|---|---|
| Bund | 790 |
| Land | 43 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 17 |
| Daten und Messstellen | 20 |
| Förderprogramm | 575 |
| Text | 216 |
| Umweltprüfung | 22 |
| unbekannt | 22 |
| License | Count |
|---|---|
| geschlossen | 114 |
| offen | 597 |
| unbekannt | 127 |
| Language | Count |
|---|---|
| Deutsch | 769 |
| Englisch | 114 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 128 |
| Datei | 127 |
| Dokument | 179 |
| Keine | 501 |
| Webdienst | 2 |
| Webseite | 161 |
| Topic | Count |
|---|---|
| Boden | 699 |
| Lebewesen und Lebensräume | 611 |
| Luft | 581 |
| Mensch und Umwelt | 838 |
| Wasser | 536 |
| Weitere | 783 |