API src

Found 785 results.

Related terms

Sorption von Polyhydroxycarbonsäuren (PHCS) an Zement und Mineraloberflächen - Verteilungsgleichgewichte, Sorptionsmechanismen und Oberflächenbindungsformen

Phasentransferreaktionen (Adsorption, Desorption, Oberflächenkomplexierung) bestimmen die Verteilung, den Verbleib und die Wirkung von natürlichen und anthropogenen Polyhydroxycarbonsäuren in verschiedenen Umweltkompartimenten (Sedimente, Böden, Aquifer) und in technischen Medien (Abfalldeponien, radiodaktive Endlager). Die gebildeten Oberflächenreaktionsprodukte modifizieren die physikalisch-chemischen Eigenschaften partikulärer Sorbentien und nehmen darüber Einfluss auf die Größenverteilung, die Rheologie und ggf. das Sedimentationsverhalten der Partikel. Zum Verständnis dieser Prozesszusammenhänge ist die Analyse der Mechanismen, der Stoffumsätze und der Produkte der Oberflächenreaktionen unumgänglich. Das Forschungsvorhaben behandelt grundlagenorientierte Fragestellungen (Parameter der Verteilungsgleichgewichtseinstellung hochhydrophiler niedermolekularer organischer Komplexbildner, Struktur und Stabilität von Oberflächenreaktionsprodukten, Reaktionsbeeinflussung durch physikalisch-chemische Milieufaktoren, molekülstrukturelle Faktoren der Festphasenaffinität), aus deren Verknüpfung mit Umweltgefährdungsaspekten (Schadstoffeinbettung im Deponie- und Endlagerbereich, Metall- und Radionuklidmobilisierung, Grundwassergefährdung) sich zusätzlicher Forschungsbedarf ergibt.

MIN4EU LGRB-BW: near-surface mineral raw material occurrences - harmonized dataset

Since 1999, the Geologic Survey of Baden-Württemberg publishes a statewide geological map series 1 : 50 000 "Karte der mineralischen Rohstoffe 1 : 50 000 (KMR 50)". On it, the distribution of near-surface mineral raw material prospects and occurrences (mainly) and deposits (subordinate) is shown. This continuously completed and updated map currently covers around 60% of the federal state. It is the base for the regional associations in the task of mineral planning. The prospects and occurrences are classified according to different raw material groups (e.g. raw material for crushed stone (limestone, igneous rocks, metamorphic rocks, sand and gravel), raw materials for cement, dimension stone, high purity limestone, gypsum ...). Their spatial delineation is based on various group-specific criteria such as minimum workable thickness, minimum resources, ratio overburden/workable thickness, and so on. It is assumed that they contain deposits as a whole or in parts. In the vast majority of cases, the data is not sufficient for the immediate planning of mining projects, but it does facilitate the selection of exploration areas. The name of each area (e.g. L 6926-3) consists of three parts. L = roman rnumeral fo 50, 6926 = sheet number of the topographic map 1 : 50 000, 3 = number of the area/mineral occurrence shown on this sheet. Co-occurring land-use conflicts, e.g. water protection areas and nature conservation areas, forestry and agriculture, are not taken into account in the processing of KMR 50. Their assessment is the task of land use planning, the licensing authorities and the companies interested in mining. The data is stored in the statewide raw material area database "olan-db" of the LGRB.

Entwicklung eines mathematischen Modells zur Minimierung des Energieverbrauchs bei Zementdrehrohröfen mit Ketteneinbauten

Zement wird mit Hilfe des Trocken- oder Nassverfahrens im Drehrohrofen hergestellt. Beim Nassverfahren ist der spezifische Energiebedarf zum Brennen des Klinkers ca. 40 Prozent höher als beim Trockenverfahren, da im Gegensatz zum Trockenverfahren das feuchte Vormaterial direkt in den Drehrohrofen eingebracht wird und so das Wasser im Drehrohrofen sehr energieintensiv verdampft werden muss. Eine Möglichkeit den Energiebedarf beim Nassverfahren zu senken, ist die Verbesserung des Wärmeübergangs von den heißen Rauchgasen auf das Vormaterial im Drehrohrofen, indem im Drehofen Ketten angebracht werden. Die Ketten werden im heißen Rauchgas aufgeheizt und durch die Drehbewegung des Ofens in das kältere Vormaterial gefördert, wo sie ihre Wärme entsprechend abgeben. Dadurch sind Energieeinsparungen von rd. 15 Prozent möglich. Im Rahmen dieses Forschungsprojekts soll ein mathematisches Modell, basierend auf Stoff-, Massen-, Energie- und Impulsbilanzen, zur Beschreibung des Betriebsverhaltens dieser Kettensysteme formuliert werden, um durch eine verbesserte Auslegung des Kettensystems im Drehofen den Energiebedarf und damit Umweltbelastungen und Energiekosten bei der Zementherstellung zu minimieren.

Innovative Kupferschlackenaufbereitung für die Rohstoffversorgung, Teilvorhaben 1: Chemische und Biochemische Laugungsmethoden

Reversibles ressourcenoptimiertes Fertigteildeckensystem

Optimierung der CO2-Bilanz durch naturfaserverstärkte Verbundwerkstoffe auf Zementbasis für ein nachhaltiges Bauen, Teilvorhaben: Anlagenkonzeption für anorganisch gebundener, naturfaserverstärkter Werkstoffe

WIR! - Gipsrecycling - MobilGips

Umweltfreundlicher Betonbau

Innovative Betone in Hochbauprojekten

Der Bausektor stellt eine bedeutende CO₂ Emissionsquelle dar. Global gehen jährlich CO₂ Emissionen von rund 2,5 Milliarden Tonnen auf die Herstellung der Baustoffe Zement, Stahl und Aluminium für den Gebäudebau zurück. Mehr als 1,5 Milliarden Tonnen davon werden der Herstellung von Zement und Beton zugeschrieben, ca. 8 % der globalen CO₂ Emissionen. Gleichzeitig trägt die Bauwirtschaft wesentlich zur Ressourcenbeanspruchung bei. In Deutschland wurden in 2022 rund 571 Millionen Tonnen mineralische Rohstoffe aus der Umwelt entnommen. Mineralische Bauabfälle stellen mit knapp 210 Millionen Tonnen den mit Abstand größten Abfallmassenstrom dar, der entsprechend aufbereitet als wichtige Rohstoffquelle zur Baustoffproduktion dienen kann. Um die Treibhausgasemissionen und den Ressourcenverbrauch im Bausektor zu reduzieren, setzt Berlin auf nachhaltige Baustoffe und zirkuläres Bauen. Die Berliner Senatsumweltverwaltung förderte daher in drei aufeinander folgenden Projektphasen die Untersuchung und Markteinführung einer vielversprechenden Technologie mit großem Potenzial, künftig zur Verbesserung der Klimabilanz von ressourcenschonendem Recycling-Beton (RC-Beton) beizutragen. Partnerinnen von Teilprojekten der Reihe „CORE – CO₂-reduzierter R-Beton“, waren u. a. die neustark AG , die Heim Gruppe Cemex-Heim RC-Baustoffe GmbH & Co. KG, Berger Beton SE , CEMEX Deutschland AG, das ifeu Institut Heidelberg gGmbH und das Museum für Naturkunde Berlin. Im Mittelpunkt stand dabei eine Technologie der neustark AG, die aufbereitete RC-Gesteinskörnungen aus Altbeton mit biogenem CO₂ beaufschlagt. Dabei wird CO₂ über ein Injektionssystem in Verbindung mit gebrochenem Altbeton gebracht und reagiert mit dem Calcium des Altbetons zu Kalkstein in Form von Kalzit. Das entstandene Material kann gemäß der Betonproduktnorm (DIN 1045-2) analog zur klassischen RC-Gesteinskörnung in bestimmten Betonrezepturen verwendet werden und in Anteilen natürliche Gesteinskörnungen ersetzen sowie tendenziell den Bindemittelbedarf in Betonrezepturen senken. Dies schafft einen ressourcenschonenden RC-Baustoff, der gleichzeitig als CO₂-Senke dient. In Adlershof wird ein zweiter Standort für die notwendige räumliche Erweiterung des Museums für Naturkunde (MfN) entwickelt. Nachhaltigkeitsziele des Museums für Naturkunde Das Museum für Naturkunde verfolgt bei der Entwicklung der Standorte in Mitte und Adlershof ambitionierte Nachhaltigkeitsziele. Besondere Bedeutung kommt dem Bereich Bau und Baubetrieb zu. Von der gründlichen Prüfung der tatsächlichen Bedarfe über sinnfällige funktionale Anordnungen bis hin zur Optimierung einzelner Baukörper und Konstruktionen wurden die Ziele der Nachhaltigkeit in jedem Arbeitsschritt prioritär beachtet, bei gleichzeitiger Sicherstellung der angemessenen und sicheren Unterbringung der wertvollen Sammlungen. Die aus einer kompakten Sammlungsunterbringung resultierenden hohen Verkehrslasten sind nur in einem Bauwerk aus Stahlbeton zu verwirklichen. Der Neubau in Adlershof wurde aus diesem Grund als Stahlbetonskelettbau konzipiert. Der Einsatz von RC-Betonen war in diesem Kontext naheliegend und so bot sich die Gelegenheit, in Zusammenarbeit mit der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und weiteren Partnerinnen den Einsatz des innovativen, bereits in Bauvorhaben bewährten, CO₂-speichernden CORE-Betons weiter zu untersuchen. Wo sich der CORE-Beton bei der Errichtung des Zweitstandortes des MfN in Adlershof einsetzen ließe, wurde gemeinsam unter dem Titel „CORE 3 – CO₂-reduzierter R-Beton – Phase 3“ durch die Berliner Senatsumweltverwaltung, das ifeu Institut Heidelberg, die Heim-Gruppe, die Cemex Deutschland AG und das Museum für Naturkunde untersucht. Dabei lag das Hauptaugenmerk auf dem Einsatz von RC-Gesteinskörnung, dem Einsatz aktiv karbonatisierter RC-Gesteinskörnung und dem Einsatz von klinkereffizienten Zementen zur Herstellung CO₂-armer Betone. In der praktischen Anwendung getestet werden konnte überdies die neue Normung für den RC-Beton-Einsatz (die überarbeitete DIN 1045-2), welche wesentlich größere Mengenanteile an RC-Gesteinskörnung zulässt, als es bisher der Fall war. Ziel war ein möglichst breiter Einsatz der ‚neuen‘ Betone. Im Ergebnis ist es bei einer großen Zahl der Betonbauteile möglich, Recyclingbeton mit möglichst hohen Anteilen rezyklierter Körnung zu nutzen (alle bis zu einer Druckfestigkeitsklasse von C30/37). Lediglich die Deckenplatten der Sammlungsräume, welche für besonders hohe Verkehrslasten ausgelegt sind (15 kN/m²), werden in Spannbeton und damit in konventionellem Beton ausgeführt. Insgesamt können so Bauteile in einer Menge von ca. 12.000 m³ als RC-Beton ausgeführt werden (für die Gründung ca. 6.000 m³, die Innenbauteile ca. 3.000 m³, die Außenwände ca. 1.300 m³ und das Dach ca. 1.600 m³.) Ausgehend von den für das Bauvorhaben benötigten Betonsorten (v.a. Druckfestigkeiten und Expositionsklassen) wurden unter Berücksichtigung der Projektziele und unter Beachtung der neuen Vorgaben aus dem Regelwerk (DIN 1045-2) die maximal möglichen Anteile an mineralisierter RC-Gesteinskörnung in den einzelnen Betonrezepturen abgeleitet. Der Bericht zum Projekt kann am Seitenende heruntergeladen werden. Bezogen auf den Zweitstandort in Adlershof hätte eine Herstellung aller Betonbauteile, welche im Rahmen des CORE 3 Projektes in Recyclingbeton hergestellt werden, mit einem CEM I-Beton entsprechend dem Branchenreferenzwert des C.E.C. (CONCRETE for Engineering and Contracting) einen Ausstoß von 3.200 Tonnen CO₂ zur Folge (mit deutschem Durchschnittsbeton 2.700 Tonnen CO₂). Erfolgte die Herstellung dieser Bauteile mit der hier angesetzten Referenzrezeptur (RC-Beton mit 25 % grober RC-Gesteinskörnung, CEM II/C), wäre eine Verringerung des CO₂ Ausstoßes auf 1.800 Tonnen CO₂ möglich. Ziel des Projektes ist es zu zeigen, wie durch die individuelle, den jeweiligen Bauteilen spezifisch angepasste Betonrezeptur – und unter Beachtung der novellierten DIN 1045-2 – und die Speicherung von CO₂ der CO₂-Fußabdruck pro m³ Beton weiter verringert werden kann, soweit dies Vorgaben aus dem Regelwerk zu Mindestzementgehalten ermöglichen. Bei Errichtung des Gebäudes mit den Betonrezepturen, die im Projekt in Kombination von karbonatisierter RC-Gesteinskörnung und CO₂-armer Zemente (mit gleichzeitiger Reduktion der Bindemittelgehalte) entwickelt wurden, kann der Ausstoß auf 1.360 Tonnen CO₂ reduziert werden. Dies entspricht einer Einsparung gegenüber der Referenzrezeptur um gut 430 Tonnen CO₂, was einer relativen Einsparung von knapp 25 % entspricht (inklusive CO₂-Speicherwirkung). Der detaillierte Bericht CORE 3 kann am Ende der Seite heruntergeladen werden. CORE 1: Baustoff-Entwicklung im Labor und ökologisches Potenzial Von Dezember 2020 bis April 2021 lief die erste Projektphase. Hier wurden im Labormaßstab die Grundlagen zur Baustoffentwicklung gelegt und die Erkenntnisse ökologisch und ökonomisch bilanziert und bewertet. Dazu stellte die Heim-Gruppe gebrochenen Altbeton sowie RC-Gesteinskörnungen zur Verfügung, welche die neustark AG mit CO₂ beaufschlagte und karbonatisierte. Aus diesem Material sowie aus nicht karbonatisiertem Referenzmaterial wurden bei der Firma Berger Betonrezepturen mit erhöhten Recyclinggehalten und reduzierten Zementanteilen hergestellt. Dabei wurden sowohl aktuelle als auch zukünftige regulatorische Rahmenbedingungen für RC-Beton (insbesondere Verwendung von Brechsanden 0–2 mm) beachtet. Zudem erstellte das ifeu-Institut Heidelberg eine vereinfachte Ökobilanz des Verfahrens und eine Kostenrechnung für CO₂ aus Berliner Biogasquellen. Die Ergebnisse der ersten Projektphase bestätigten das enorme ökologische Potenzial des Verfahrens. Der detaillierte Bericht CORE 1 kann unter den unten genannten Kontaktdaten angefordert werden. In der zweiten Projektphase im Mai 2021 bis Dezember 2022 startete die praktische Anwendung im großen Maßstab: In der Aufbereitungsanlage für mineralische Bauabfälle der Firma Heim wurde RC-Gesteinskörnung aus reinem Altbeton (Typ 1) mit Hilfe einer mobilen Anlage der neustark AG mit CO₂ beaufschlagt. Die karbonatisierte RC-Gesteinskörnung erhielt erstmals eine Zertifizierung und Zulassung als Zuschlag nach DIN EN 12620 für Transportbeton. Im Herbst 2022 wurden rund 200 m³ dieses Betons in einem Bauabschnitt der Quartiersentwicklung Friedenauer Höhe in Berlin eingesetzt, die im Joint Venture mit OFB Projektentwicklung und Instone Real Estate realisiert wurde. Der Beton diente u.a. als Aufbeton für Geschossdecken sowie zur Betonierung von Wänden und des Aufzugsschachts. Parallel zeigte eine Bilanzierung des Umweltforschungsinstitut ifeu Heidelberg, dass mit den entwickelten Rezepturen eine relevante Umweltentlastung über alle betrachteten Umweltwirkungskategorien hinweg möglich ist. Je höher der Anteil insbesondere an feiner RC-Gesteinskörnung, desto höher die Bindungsrate für CO₂. Die Behandlung der RC-Gesteinskörnung zeigte, dass die Klimawirksamkeit des Betons bei gleichen Eigenschaften und Einhaltung aller einschlägigen Normen durch die Kombination von karbonatisierter RC-Gesteinskörnung und Bindemittelreduktion um bis zu 20 % verringert werden kann. Der detaillierte Bericht CORE 2 kann unter den unten genannten Kontaktdaten angefordert werden. Die im CORE-Pilotvorhaben demonstrierte Praxistauglichkeit der Technologie überzeugte alle Projektbeteiligten. Bereits mehr als 10 Anlagen der Firma neustark zur CO₂-Speicherung sind in der Schweiz in Betrieb. 2023 investierte Heim erstmals in Deutschland in eine entsprechende Anlage, sodass CO₂-speichernde RC-Gesteinskörnung seitdem auf dem Berliner Markt verfügbar ist. Die erste CO₂-Speicheranlage in Deutschland wurde am 28.09.2023 feierlich durch neustark und HEIM in Anwesenheit von über 100 Gästen und Vertreterinnen und Vertretern der Politik in Berlin Marzahn eröffnet. Bei einem flächendeckenden Einsatz der im CORE-Projekt entwickelten und in der Praxis erprobten Betonrezepturen ließen sich im Land Berlin durch die Kombination von karbonatisierter RC-Gesteinskörnung und den effizienten Einsatz CO₂-armer Zemente signifikante CO₂-Einsparungen erreichen. Bilanziell anrechenbar wären die Negativemissionen aus der karbonatisierten RC-Gesteinskörnung, wenn die aktuell zur Querfinanzierung des Baustoffs auf dem privaten CO₂-Markt emittierten Zertifikate durch den Bauherrn aufgekauft würden oder ein entsprechendes Arrangement dazu mit neustark gefunden würde. Das Berliner Ausschreibungs- und Vergabegesetz (BerlAVG) verpflichtet öffentliche Auftraggeber der unmittelbaren Berliner Landesverwaltung bei der Vergabe von Bauleistungen ab einem geschätztem Auftragswert von 50.000 Euro ökologische Kriterien zu berücksichtigen und umweltfreundlichen und energieeffizienten Produkten, Materialien und Verfahren den Vorzug zu gegeben. Wesentliches Instrument zur Umsetzung dieser Vorgabe ist die Verwaltungsvorschrift Beschaffung und Umwelt (VwVBU). Die Federführung für die Entwicklung von Vorschlägen an den Senat zur Fortentwicklung der VwVBU liegt bei der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt. Verwaltungsvorschrift Beschaffung und Umwelt – VwVBU Nachhaltiges Bauen in der öffentlichen Beschaffung Nachbericht Fachdialog zirkuläres Bauen am Beispiel ressourcenschonender Beton Leitfaden für nachhaltiges Bauen des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen Pressemitteilung der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt vom 07.10.2022 zum erstmaligen Einsatz von ressourcenschonendem und klimaverträglicherem Transportbeton in Berliner Bauvorhaben Friedenauer Höhe

Identification, analysis and presentation of the products in the industrial sectors covered by the EU ETS, their economic importance and their significance for CO₂ emissions

In this data research project, quantitative data from available sources of information relating to two core topics will be researched and compiled in a uniform data format: 1. product-related material flows, energy consumption and (direct and indirect) greenhouse gas emissions within the scope of the EU-ETS 1, with a focus on the steel, cement, aluminium, refinery and basic chemicals industries. 2. building on this, the further process steps along the value chain up to two selected end products: a) a passenger car and b) plastic packaging. Based on the data from the analysis for the scope of EU-ETS 1 (step 1. as mentioned above), the case studies were developed to determine and quantify the CO₂ emissions and the cost shares caused by these emissions through the EU-ETS 1 along the value chain at the end product level. Veröffentlicht in Climate Change | 70/2025.

1 2 3 4 577 78 79