In diesem Teilvorhaben sollen die neuentwickelten technischen Prozesse aus AP1 bis AP4 techno-ökonomisch und ökologisch bewertet werden. Mit einer Systemanalyse werden die neuen Verwertungsoptionen für Feinstbetonbrechsand (FBBS), Feinbetonbrechsand (FBS) und karbonatisierte RC-Gesteinskörnungen begleitend sowohl aus einer betriebs- als auch aus volkswirtschaftlicher Perspektive analysiert und bewertet. Dabei wird der Beitrag zu übergeordneten Nachhaltigkeitszielen, wie einer über den Lebenszyklus aus Herstellung, Nutzung und Recycling verbesserten CO2-Bilanz und Energieeffizienz, einem reduzierten Rohstoffverbrauch oder Schadstoffgehalt ermittelt. Erforderliche Daten werden im Rahmen des Projektes gesammelt und in diesem Teilprojekt im Rahmen von techno-ökonomischen Analysen (TEA) und Ökobilanzen (LCA) ausgewertet. Neu ist dabei, dass es keine derartigen Analysen bisher gibt und daher jeweils neue TEA und LCA modelliert und erstellt werden müssen. Zudem wird ermittelt, wie hoch das regionale Aufkommen von erforderlichen Sekundärrohstoffen ist, und wie Zusammensetzung und Sortierungsmöglichkeiten aussehen. Basierend auf dem geschätzten, regionalen Aufkommen wird eine Standort- und Kapazitätsplanung durchgeführt, die aufzeigt, wie ein optimales Recyclingnetzwerk in Deutschland für RC-Belitklinker und RC-Zement aussehen würde. Dies ist wichtig für strategische Entscheidungen der an der Wertschöpfungskette beteiligten Unternehmen. Abschließend werden derzeitige Rahmenbedingungen untersucht und Empfehlung zu ressourcenschonenden politischen Handlungsoptionen zur Systemänderung bzw. verstärkten Kreislaufführung gegeben. Ohne dieses Teilvorhaben könnten die neu entwickelten Technologien und Rezepturen für RC²-Beton mit rezykliertem Zuschlag und rezykliertem Zement nicht hinsichtlich ihres Abschneidens bei ökologischen und ökonomische Kriterien bewertet werden. Zudem könnten keine Systemaussagen und Handlungsempfehlungen getroffen werden.
This interactive webapp reproduces the main results from an accompanying article by the same authors, which explores the most cost-efficient abatement options for the hard-to-electrify (HTE) sectors (chemical feedstocks, long-distance maritime and aviation, primary steel and cement). Some of the main assumptions used in the study can be modified here, following which a techno-economic analysis is carried out to determine the levelized cost of each product or service, for all available abatement options available. The abatement costs are then calculated, and plotted for different low-emission hydrogen and non-fossil CO2 cost assumptions, building the mitigation landscape for each HTE sector.
Our results demonstrate a diverse mitigation landscape that can be categorized into three tiers, based on the abatement cost and technologies required. By requiring long-term climate neutrality through simple conditions, the mitigation landscape narrows substantially, with single options dominating each sector.
For more detailed information on this study, we refer users to the Supplementary Information file provided with the study, and the original software used
Since 1999, the Geologic Survey of Baden-Württemberg publishes a statewide geological map series 1 : 50 000 "Karte der mineralischen Rohstoffe 1 : 50 000 (KMR 50)". On it, the distribution of near-surface mineral raw material prospects and occurrences (mainly) and deposits (subordinate) is shown. This continuously completed and updated map currently covers around 60% of the federal state. It is the base for the regional associations in the task of mineral planning.
The prospects and occurrences are classified according to different raw material groups (e.g. raw material for crushed stone (limestone, igneous rocks, metamorphic rocks, sand and gravel), raw materials for cement, dimension stone, high purity limestone, gypsum ...). Their spatial delineation is based on various group-specific criteria such as minimum workable thickness, minimum resources, ratio overburden/workable thickness, and so on. It is assumed that they contain deposits as a whole or in parts. In the vast majority of cases, the data is not sufficient for the immediate planning of mining projects, but it does facilitate the selection of exploration areas.
The name of each area (e.g. L 6926-3) consists of three parts. L = roman rnumeral fo 50, 6926 = sheet number of the topographic map 1 : 50 000, 3 = number of the area/mineral occurrence shown on this sheet.
Co-occurring land-use conflicts, e.g. water protection areas and nature conservation areas, forestry and agriculture, are not taken into account in the processing of KMR 50. Their assessment is the task of land use planning, the licensing authorities and the companies interested in mining.
The data is stored in the statewide raw material area database "olan-db" of the LGRB.