Since 1999, the Geologic Survey of Baden-Württemberg publishes a statewide geological map series 1 : 50 000 "Karte der mineralischen Rohstoffe 1 : 50 000 (KMR 50)". On it, the distribution of near-surface mineral raw material prospects and occurrences (mainly) and deposits (subordinate) is shown. This continuously completed and updated map currently covers around 60% of the federal state. It is the base for the regional associations in the task of mineral planning. The prospects and occurrences are classified according to different raw material groups (e.g. raw material for crushed stone (limestone, igneous rocks, metamorphic rocks, sand and gravel), raw materials for cement, dimension stone, high purity limestone, gypsum ...). Their spatial delineation is based on various group-specific criteria such as minimum workable thickness, minimum resources, ratio overburden/workable thickness, and so on. It is assumed that they contain deposits as a whole or in parts. In the vast majority of cases, the data is not sufficient for the immediate planning of mining projects, but it does facilitate the selection of exploration areas. The name of each area (e.g. L 6926-3) consists of three parts. L = roman rnumeral fo 50, 6926 = sheet number of the topographic map 1 : 50 000, 3 = number of the area/mineral occurrence shown on this sheet. Co-occurring land-use conflicts, e.g. water protection areas and nature conservation areas, forestry and agriculture, are not taken into account in the processing of KMR 50. Their assessment is the task of land use planning, the licensing authorities and the companies interested in mining. The data is stored in the statewide raw material area database "olan-db" of the LGRB.
<p>Zusammen mit der Bundesstelle für Chemikalien und dem Bundesinstitut für Risikobewertung führt das Umweltbundesamt (UBA) seit 2017 eine REACH-Stoffbewertung zu den registrierten Nanoformen von Zinkoxid durch. Die Auswertung der Daten zu Umweltverhalten und -wirkung der registrierten Zinkoxid-Nanoformen ist abgeschlossen.</p><p>Auf Grundlage der von den Registranten vorgelegten Studien kommt das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> zu dem Schluss, dass die getesteten Nanoformen eine vergleichbare aquatische Toxizität wie andere Zinkverbindungen haben und die harmonisierte Einstufung im Anhang VI der <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CLP#alphabar">CLP</a>-Verordnung als akut und chronisch gewässergefährdend der Kategorie 1 auch für die getesteten Nanoformen zutreffend ist. Es kann allerdings nicht ausgeschlossen werden, dass ein nanopartikelspezifischer Effekt zur Gesamttoxizität der getesteten Zinkoxid-Nanoformen beiträgt. Auch zeigen sich leichte Unterschiede in der Toxizität sowohl zwischen den verschiedenen Nanoformen als auch zwischen den Nanoformen und dem als Kontrolle mitgetesteten leichtlöslichen Zinkchlorid.</p><p>Aus den von den Registranten vorgelegten Studien wird deutlich, dass sich die registrierten Nanoformen neben ihrer Größe und Geometrie vor allem in ihren Oberflächeneigenschaften, aber auch in ihrer Löslichkeit und Dispersionsstabilität über die Zeit unterscheiden.</p><p>Im Rahmen der Stoffbewertung wurde für alle registrierten Nanoformen von Zinkoxid die Löslichkeit entsprechend des Screeningtests nach dem „Transformation/Dissolution Protokoll“ der <a href="https://www.umweltbundesamt.de/service/glossar/o?tag=OECD#alphabar">OECD</a> sowie die Dispersionsstabilität nach der OECD Prüfrichtlinie 318 bestimmt. Basierend auf diesen Ergebnissen wurden von den Registranten drei Nanoformen ausgewählt, für die die toxische Langzeitwirkung auf Algen und Flohkrebse anhand der OECD-Prüfrichtlinien 201 und 211 untersucht wurde.</p><p>Gemäß <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH-Verordnung#alphabar">REACH-Verordnung</a> liegt es in der Verantwortung der Registranten, sicherzustellen, dass die vorliegenden Informationen hinreichend sind, um die Risiken aller von der Registrierung abgedeckten Formen zu bewerten. Die Prüfung der Erfüllung dieser Verpflichtung ist nicht Gegenstand der Stoffbewertung, sondern wird ggf. durch die ECHA im Rahmen einer Dossierbewertung stichprobenhaft geprüft.</p><p>Zinkoxid ist ein chemischer Grundstoff, der für die Herstellung unterschiedlichster Produkte eingesetzt wird. Weltweit werden große Mengen pigmentäres und mikroskaliges Zinkoxid als Weißpigment in Wandfarben, als Additiv zur Vulkanisierung von Gummi oder als Zusatz zu Zement eingesetzt. Nanopartikuläres Zinkoxid weist auf Grundlage seiner geringen Größe und großen spezifischen Oberfläche spezielle physikalisch-chemische Eigenschaften auf. Hierzu zählen katalytische, optische und elektronische Eigenschaften. Diese Eigenschaften eröffnen zusätzliche Einsatzmöglichkeiten für Zinkoxid, wie z.B. als UV-Filter in Sonnenschutzmitteln, in Textilien, in Klarlacken oder für transparenten Kunststoffe.</p><p>Die Stoffbewertung ist ein Instrument der REACH-Verordnung, anhand dessen die zuständigen Behörden der EU-Mitgliedstaaten klären, ob sich aus der Herstellung oder Verwendung eines in der EU registrierten Stoffes ein Risiko für die menschliche Gesundheit und/oder die Umwelt ergibt. Zur Bewertung des Stoffrisikos werden sowohl die Daten, die bei der Registrierung des Stoffes zur Verfügung gestellt wurden, als auch alle weiteren verfügbaren Informationsquellen zu Rate gezogen. Sollte die vorhandene Datenlage keine eindeutige Beurteilung des Risikos ermöglichen, können die nationalen Behörden weitere Informationen von den Registranten des bewerteten Stoffes anfordern. Kann die Besorgnis nicht ausgeräumt werden oder erhärtet sich der Risikoverdacht, kann es als Konsequenz einer Stoffbewertung zu EU-weiten Risikomanagementmaßnahmen, wie z.B. Beschränkungen des Stoffes, Identifizierung als besonders besorgniserregend oder andere Maßnahmen, wie eine harmonisierte Einstufung nach CLP-Verordnung, kommen.</p><p>Der Fokus der Stoffbewertung von Zinkoxid durch die deutschen Bundesoberbehörden liegt auf den im Registrierungsdossier enthaltenen Nanoformen. Unter Nanoformen eines Stoffes versteht man die Formen eines chemischen Stoffes, die der Definitionsempfehlung der EU zu Nanomaterialien entsprechen.</p><p>Das UBA ist alleine für die Umweltaspekte der Stoffbewertung von Zinkoxid zuständig. Die Aspekte hinsichtlich der menschlichen Gesundheit liegen in der Verantwortung des Bundesinstitut für Risikobewertung.</p>
<p>Die Rohstoffproduktivität stieg zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war eine Verdopplung. Dieses Ziel wurde verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird die „Gesamtrohstoffproduktivität“ abgebildet. Dieser weiterentwickelte Indikator ist Teil der Nationalen Kreislaufwirtschaftsstrategie (NKWS) von 2024.</p><p>Entwicklung der Rohstoffproduktivität</p><p>Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt.</p><p>Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele:</p><p>Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms (<a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">ProgRess</a>) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020. </p><p>Indikator "Rohstoffproduktivität"</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> ist auch in der 2024 veröffentlichten <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> neben weiteren Indikatoren und Zielen verankert.</p><p>Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a> im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum.</p><p>Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz</p><p>Zur Berechnung der Rohstoffproduktivität wird der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>) bezeichnet.</p><p>Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a> und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators.<br><br>Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen.</p><p>Entwicklung des abiotischen Direkten Materialeinsatzes</p><p>Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994.</p><p>Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 24 %. Letzte Zahlen des Statistischen Bundesamtes zeigen, dass der direkte abiotische Materialeinsatz bis 2022 mit 1.149 Mio. t. weiter leicht gesunken ist (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“).</p><p>Komponenten des abiotischen Direkten Materialeinsatzes</p><p>Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2022 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2022 um 410 Millionen Tonnen (– 37 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 45 Mio. t an (+ 11%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 38 % im Jahre 2022.</p><p>Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2022 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“):</p><p>Erfassung der indirekten Importe</p><p>Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. <br><br>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden.</p><p>Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2022 die Einfuhren an überwiegend abiotischen Fertigwaren um 114 % deutlich stärker zu, als die von <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a>. Deren Importe gingen sogar leicht zurück. Die von Rohstoffen sanken bis 2022 ebenfalls um 3 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz.</p><p>Die Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert.</p><p>Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe</p><p>Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a> abbilden – wie etwa beim <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> <strong>„Rohstoffverbrauch“</strong> (engl. „Raw Material Input“, <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird.</p><p>Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 (letztes verfügbares Jahr) stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMIabiot) um mehr als 6 %. Der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>abiot, der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um ca. 6 % (siehe Abb. „Rohstoffproduktivität“).</p><p>Bedeutung der Biomasse nimmt zu</p><p>Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden.<br><br>Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen.</p><p>Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität</p><p>Mit Verabschiedung des <a href="https://www.umweltbundesamt.de/themen/zweites-deutsches-ressourceneffizienzprogramm">2. Deutschen Ressourceneffizienzprogramms (ProgRess II)</a> und der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> wurde dem <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrrohstoffeinsatz#alphabar">Primärrohstoffeinsatz</a> (<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>). Die <a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a> wird seit Veröffentlichung des <a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms III</a> ausschließlich berichtet. Der Indikator ist auch in der <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> von 2024 verankert.</p><p>Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Der Indikator wird <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-gesamtrohstoffproduktivitaet">hier</a> ausführlich vorgestellt.</p>
In this data research project, quantitative data from available sources of information relating to two core topics will be researched and compiled in a uniform data format: 1. product-related material flows, energy consumption and (direct and indirect) greenhouse gas emissions within the scope of the EU-ETS 1, with a focus on the steel, cement, aluminium, refinery and basic chemicals industries. 2. building on this, the further process steps along the value chain up to two selected end products: a) a passenger car and b) plastic packaging. Based on the data from the analysis for the scope of EU-ETS 1 (step 1. as mentioned above), the case studies were developed to determine and quantify the CO₂ emissions and the cost shares caused by these emissions through the EU-ETS 1 along the value chain at the end product level. Veröffentlicht in Climate Change | 70/2025.
Zielsetzung: Dicht- und Klebstoffkartuschen finden in sehr vielen Bereichen zunehmende Anwendung. Kartuschen sind eine vom Endnutzer sehr gut akzeptierte Verpackung und Verarbeitungshilfe der Produkte. Sie zeichnen sich einerseits durch eine hohe Homogenität des Kartuschenmaterials, vorwiegend hochwertiges Polyethylen mit hoher Dichte (HDPE), und andererseits durch eine extrem variable chemische Zusammensetzung der Inhaltsstoffe aus. In ersten Voruntersuchungen wurde festgestellt, dass etwa 90 % der gesammelten Kartuschen MS (modifizierte Silan-)Polymer , Acryl- und Silikon-haltige Restinhaltstoffe aufwiesen. Die restlichen 10 % beinhalten eine Vielzahl anderer Inhaltsstoffe (u. a. Bitumen, Polyurethan, Zement). Die Menge und der Zustand der in den Kartuschen verbliebenen Restinhaltstoffe variiert stark. Dichtstoffkartuschen werden als „nicht recyclingfähig“ eingestuft. Dies liegt an der sehr variablen Zusammensetzung der Inhaltsstoffe und deren Rückstände in der Kartusche, die bei der Kreislaufführung des HDPEs zu massiven Problemen führen (z. B. Silikonrückstände). Deshalb werden Kartuschen in Deutschland derzeit thermisch verwertet, in anderen europäischen Ländern auch deponiert. Marktanalysen gehen davon aus, dass in Deutschland jährlich 60- 70 Mio. Stück Kartuschen in Verkehr gebracht werden. In Europa fallen pro Jahr rund 45.000 t Kartuschenabfälle an. Aufgrund der hohen Mengen und des ungelösten Entsorgungsproblems sollen die Hersteller verstärkt in die Pflicht genommen werden. Für die Verwendung von Kunststoffen werden von der EU zwischenzeitlich Aufschläge von 800 €/t erhoben. Es ist absehbar, dass diese Aufschläge früher oder später an die Hersteller weitergereicht werden. Auf EU-Ebene wurden und werden auch Diskussionen über ein Verbot nicht-recyclingfähiger Kunststoffverpackungen geführt. Im Rahmen des Forschungsvorhabens soll die Recyclingfähigkeit von Dicht- und Klebstoffkartuschen untersucht werden. Dies setzt zunächst ein effizientes Erfassungssystem voraus, das gleichermaßen beim Fachhandel, Handwerk und Sortieranlagen ansetzt und die gebrauchten Kartuschen als Monostrom separiert. Bei der Entwicklung des Recyclingprozesses sollen vorzugsweise mechanische und chemische, nachgeordnet thermische Verfahren betrachtet werden. Ziel ist die Kreislaufführung des hochwertigen HDPEs. Konkret: Aus gebrauchten Kartuschen neue Kartuschen produzieren. Wenn es gelingt HDPE in ausreichender Qualität zu gewinnen, existiert für das Rezyklat bereits ein Absatzmarkt.
Bundesumweltministerin Svenja Schulze hat heute dem Vorstandsvorsitzenden der Salzgitter AG, Prof. H.J. Fuhrmann, einen Förderbescheid in Höhe von über 5 Mio. Euro für ein Projekt zur Herstellung klimafreundlichen Stahls übergeben. Im Beisein des Ministerpräsidenten des Landes Niedersachsen, Stephan Weil, fiel damit auch der offizielle Startschuss des BMU-Förderprogramms 'Dekarbonisierung in der Industrie'. Mit diesem Programm sollen schwer vermeidbare, prozessbedingte Treibhausgasemissionen in den energieintensiven Branchen wie Stahl, Zement, Kalk und Chemie durch den Einsatz innovativer Techniken möglichst weitgehend und dauerhaft reduziert werden. Bundesumweltministerin Svenja Schulze: 'Für ein klimaneutrales Deutschland brauchen wir eine Industrie, die ohne fossile Energie- und Rohstoffe auskommt. Mit unserem neuen Dekarbonisierungsprogramm fördern wir eine grundlegende Neuausrichtung der Produktionsprozesse. Der Klimaschutz wird so zum Innovationstreiber für die Wirtschaft, macht den Industriestandort Deutschland zukunftsfähig und erhält hochqualifizierte Arbeitsplätze. Das Projekt in Salzgitter ist ein wichtiger, erster Schritt in diese Richtung, dem weitere folgen werden. Es zeigt auch, dass wir den Ausbau der erneuerbaren Energien und den Markthochlauf von grünem Wasserstoff beschleunigen müssen, damit wir unsere anspruchsvollen Ziele erreichen können.' Die Anlage der Salzgitter Flachstahl GmbH mit einem Gesamtinvestitionsvolumen von rund 13 Mio. Euro soll innerhalb der nächsten zwei Jahre in Betrieb gehen und zeigen, wie die sukzessive Umstellung eines integrierten Hochofenwerks auf die CO2-arme Stahlerzeugung erfolgen kann. Mit dem von der Salzgitter AG entwickelten Verfahren wird die konventionelle Roheisengewinnung im Hochofen auf die emissionsarme Direktreduktion umgestellt. Beim Einsatz von Wasserstoff aus erneuerbaren Energien wird so die Herstellung von grünem Stahl ermöglicht. Innovative Projekte wie dieses sollen auch als Vorbilder dienen und als Multiplikatoren auf die ganze Branche ausstrahlen. Im Projekt ProDRI soll der flexible Betrieb mit Wasserstoff und Erdgas demonstriert und optimiert werden. Langfristiges Ziel von Salzgitter ist die ausschließliche Nutzung erneuerbaren Wasserstoffs zur Herstellung von grünem Stahl. Steht erneuerbarer Wasserstoff noch nicht in ausreichenden Mengen zur Verfügung, kann auch Erdgas zur Reduktion eingesetzt werden und dabei bereits erhebliche Mengen CO2 gegenüber der herkömmlichen Hochofen-Route einsparen. Die Stahlindustrie war 2019 mit über 36 Mio. Tonnen für etwa 30% der direkten Industrieemissionen in Deutschland verantwortlich. Mit dem Förderprogramm Dekarbonisierung im Industriesektor wird eine Maßnahme des Klimaschutzplans 2050 sowie des Klimaschutzprogramms 2030 umgesetzt. Das BMU wird - vorbehaltlich der Verabschiedung des Bundeshaushalts in der kommenden Woche - über den Energie- und Klimafonds in den kommenden Jahren rund 2 Mrd. Euro zur Verfügung stellen. Text gekürzt
Beim Brennen des Zementklinkers tritt praktisch keine SO2-Emission auf, da der aus den Roh- und Brennstoffen stammende Schwefel mit den Alkalien des Brennguts unter Bildung von schwerverdampfbarem Alkalisulfat reagiert. Um ohne Erhoehung der SO2-Emission auch schwefelreiche Abfaelle (Oelrueckstaende, Saeureharz) als Brennstoff Verwenden zu koennen, muss in Betriebsversuchen geprueft werden, ob der Schwefel nicht nur von den Alkalien, sondern auch vom Kalk gebunden werden kann. Ausserdem ist zu Untersuchen, ob der dann hoehere Sulfatgehalt im Zementklinker die Eigenschaften des Zements veraendert.
Zement wird mit Hilfe des Trocken- oder Nassverfahrens im Drehrohrofen hergestellt. Beim Nassverfahren ist der spezifische Energiebedarf zum Brennen des Klinkers ca. 40 Prozent höher als beim Trockenverfahren, da im Gegensatz zum Trockenverfahren das feuchte Vormaterial direkt in den Drehrohrofen eingebracht wird und so das Wasser im Drehrohrofen sehr energieintensiv verdampft werden muss. Eine Möglichkeit den Energiebedarf beim Nassverfahren zu senken, ist die Verbesserung des Wärmeübergangs von den heißen Rauchgasen auf das Vormaterial im Drehrohrofen, indem im Drehofen Ketten angebracht werden. Die Ketten werden im heißen Rauchgas aufgeheizt und durch die Drehbewegung des Ofens in das kältere Vormaterial gefördert, wo sie ihre Wärme entsprechend abgeben. Dadurch sind Energieeinsparungen von rd. 15 Prozent möglich. Im Rahmen dieses Forschungsprojekts soll ein mathematisches Modell, basierend auf Stoff-, Massen-, Energie- und Impulsbilanzen, zur Beschreibung des Betriebsverhaltens dieser Kettensysteme formuliert werden, um durch eine verbesserte Auslegung des Kettensystems im Drehofen den Energiebedarf und damit Umweltbelastungen und Energiekosten bei der Zementherstellung zu minimieren.
Damit hoeherwertige oder beschraenkt verfuegbare Baustoffe eingespart und gleichzeitig Abfallstoffe wiederverwendet werden koennen, sollen geeignete Mischungen gefunden werden, in denen die Abfallstoffe entweder Mineralstoffersatz oder Bindemittelzusatz darstellen. Die Mischungsverhaeltnisse sind so zu waehlen, dass nicht nur die technischen Vorschriften erfuellt werden (mechanische Festigkeit, Frostsicherheit), sondern auch fuer moegliche Abnehmer der finanzielle Vorteil bei Einsatz der Abfallstoffe gegenueber Industrieprodukten deutlich wird. Nach Untersuchung der Ausgangsstoffe soll erreicht werden: 1. Bodenverbesserung: a) Loess und Braunkohlenflugasche, B) Loess und Huettensand; 2. Verfestigung von Abfallstoffen: a) Waschberge und Zement, b) Muellasche und Zement, c) Vorsiebmaterial und Zement; 3. Verfestigung von Abfallstoffen: a) Sand und Flugasche, b) Sand und Huettensand und Kalk, c) Vorsiebmaterial und Huettensand und Kalk.
Zement angreifende chemische Stoffe im Grundwasser wie z. B. Kohlensäure, Ammonium und Sulfat können die Grenztragfähigkeit von geotechnischen Bauteilen wie Verpressanker und Pfählen reduzieren. Dies soll anhand von Versuchen und numerischen Simulationen untersucht werden. Aufgabenstellung und Ziel Bei den laufenden Projekten und Baumaßnahmen der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) ergeben sich immer wieder Schwierigkeiten, die Auswirkungen eines chemischen Angriffs auf den Mörtel bzw. Beton bei geotechnischen Elementen wie Verpressankern, Kleinverpresspfählen und Betonpfählen bezüglich der dauerhaften Tragfähigkeit realistisch zu bewerten und angemessene Anforderungen an Baustoffe und Bauweisen festzulegen. Die in der Literatur und teilweise auch im Regelwerk sowie in Zulassungen beschriebenen Lösungsansätze sind zumeist entweder nicht praxistauglich oder aufgrund der gewählten Randbedingungen bei den dokumentierten Modellversuchen nicht ausreichend realitätsnah. Im Rahmen eines in drei Teile gegliederten Gesamtvorhabens (1. Einwirkungen von chemischen Substanzen aus dem Grundwasser, 2. Widerstand des Mörtels bzw. Betons gegenüber dem chemischen Angriff, 3. Veränderung des Tragverhaltens aufgrund der Veränderung des Mörtels bzw. Betons) wird in diesem Teilprojekt 3 die Grenztragfähigkeit der geotechnischen Elemente unter der Einwirkung eines chemischen Angriffs untersucht. Ein Hauptaspekt des FuE-Vorhabens ist die Untersuchung des kalklösenden Kohlensäureangriffs auf Verpressanker. Zur Tragfähigkeit von Ankern und Verpresspfählen unter Einwirkung von kalklösender Kohlensäure sind bisher nur wenige Versuchsreihen (Manns und Lange 1993, Hof 2004, Triantafyllidis und Schreiner 2007) durchgeführt worden, welche aufgrund der differierenden Versuchsrandbedingungen nur schwer direkt vergleichbar sind. Unterschiede liegen zum Beispiel in der Größe der Ankerkörper und deren Herstellung. In allen Versuchsreihen zeigte sich in den ersten Monaten eine deutlich erkennbare Abnahme der Tragfähigkeit, die sich mit fortschreitender Dauer des chemischen Angriffs verlangsamte. Dabei variierte der Tragfähigkeitsverlust zwischen 20 und 70 Prozent. Diese divergierenden Ergebnisse für die Grenztragfähigkeit der Verpressanker sollen verifiziert und entsprechend der neuen Erkenntnisse angepasst werden. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Verpressanker und Kleinverpresspfähle werden im Rahmen von Baumaßnahmen der WSV - beispielweise bei Auftriebssicherungen von Schleusen- und Wehrsohlen, bei Rückverankerungen von Ufereinfassungen, aber auch bei der temporären Sicherung von Baugruben - verwendet. In den Fällen mit einem erhöhten chemischen Angriff aus dem Grundwasser oder dem Boden auf den Mörtel bzw. Beton dieser geotechnischen Elemente müssen diese aufgrund nicht ausreichender praxistauglicher Erkenntnisse und Lösungsansätze über die Tragfähigkeitsverluste durch kostenintensivere Konstruktionen wie z. B. Stahlrammpfähle ersetzt werden. Die Konsequenzen sind deutliche Kostensteigerungen, höhere Lärmbelästigungen, größere Erschütterungen sowie insgesamt ein gestiegener Arbeitsaufwand in Verbindung mit einer längeren Bauzeit. Untersuchungsmethoden Im Rahmen dieses Forschungs- und Entwicklungsvorhabens wird zum einen ein umfangreiches Laborprogramm mit Modellankern, bei denen baupraktische Randbedingungen wie In-situ-Spannungszustände und der Verpressvorgang berücksichtigt werden können, durchgeführt. Zum anderen findet parallel die Untersuchung an Verpressankern hinsichtlich ihrer Grenztragfähigkeit bei betroffenen Bauvorhaben der WSV statt. In Verbindung mit der Ruhr-Universität Bochum und der Firma Schudy Sondermaschinenbau erfolgte die Entwicklung eines Versuchsstandes, der im Frühjahr 2019 in Betrieb genommen wurde. Der Versuchsstand besteht insgesamt aus sieben Versuchscontainern. (Text gekürzt)
| Origin | Count |
|---|---|
| Bund | 765 |
| Land | 42 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 17 |
| Daten und Messstellen | 20 |
| Förderprogramm | 548 |
| Text | 217 |
| Umweltprüfung | 22 |
| unbekannt | 22 |
| License | Count |
|---|---|
| geschlossen | 115 |
| offen | 570 |
| unbekannt | 127 |
| Language | Count |
|---|---|
| Deutsch | 746 |
| Englisch | 111 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 128 |
| Datei | 127 |
| Dokument | 179 |
| Keine | 480 |
| Webdienst | 2 |
| Webseite | 156 |
| Topic | Count |
|---|---|
| Boden | 677 |
| Lebewesen und Lebensräume | 590 |
| Luft | 561 |
| Mensch und Umwelt | 812 |
| Wasser | 515 |
| Weitere | 756 |