Beim Brennen des Zementklinkers tritt praktisch keine SO2-Emission auf, da der aus den Roh- und Brennstoffen stammende Schwefel mit den Alkalien des Brennguts unter Bildung von schwerverdampfbarem Alkalisulfat reagiert. Um ohne Erhoehung der SO2-Emission auch schwefelreiche Abfaelle (Oelrueckstaende, Saeureharz) als Brennstoff Verwenden zu koennen, muss in Betriebsversuchen geprueft werden, ob der Schwefel nicht nur von den Alkalien, sondern auch vom Kalk gebunden werden kann. Ausserdem ist zu Untersuchen, ob der dann hoehere Sulfatgehalt im Zementklinker die Eigenschaften des Zements veraendert.
Lehmbauweisen sind die aeltesten Massivbauweisen der Welt. Vor allem in den Gegenden, in denen reichhaltige Tonvorkommen und Sande vorhanden sind, wurden in Europa bis in das 19. Jahrhundert hinein luftgetrocknete Lehmsteine fuer sehr preiswerte Wohn- und Nutzbauten eingesetzt. Erst mit der Einfuehrung der industriellen Brenntechnik wurden die Lehmsteine zunehmend durch gebrannte Ziegel abgeloest. In den letzten 20 Jahren erweckte die Lehmbauweise in Deutschland erneut das oeffentliche Interesse. Als natuerlicher Baustoff, der nur geringe Energieressourcen verbraucht, fanden die luftgetrockneten Lehmsteine besonders im Zuge der biologisch-oekologischen Bewegung bei Ingenieuren und Architekten zunehmend Beachtung. Es zeichnen sich dabei zwei Einsatzfelder fuer luftgetrocknete Lehmsteine ab: Neubau bzw. Restaurierung vornehmlich von Fachwerkbauten. Die Vorteile der Lehmbauweise fuer Mensch und Umwelt liegen auf der Hand. So koennen beispielsweise Strohleichtlehmsteine aus regional vorkommenden, nachwachsenden Rohstoffen energie- und umweltschonend hergestellt werden. Darueber hinaus zeichnen sich Lehmhaeuser durch ein hervorragendes physiologisches Raumklima aus. Die Studie 'Produktion von Strohlehmsteinen' soll im Sinne einer Pilotstudie die Voraussetzungen zur Fertigung, Qualifikation und Vermarktung von Strohlehmsteinen aufzeigen. In einer Modellentwicklung werden Chancen fuer die technische und wirtschaftliche Realisierung der Lehmbauweisen dargestellt. Fuer die Bearbeitung der Studie wird eine interdisziplinaere Zusammenarbeit der Fachhochschule Stralsund, Fachbereich Maschinenbau und der Fachhochschule Neubrandenburg, Fachbereich Bauingenieurwesen gemeinsam mit der Oekologischen Beschaeftigungsinitiative Krummenhagen e.V. (OeBIK) durchgefuehrt.
Der Anteil an Ziegel in einem RC-Baustoff ist nach den TL RC-ToB 95 begrenzt. Die Trennung in hart- und weichgebrannte Ziegel - auch in Mischung mit weiteren Baustoffkomponenten z. B. Mörtel und Putz - sowie auch die Höhe der Grenzwerte sind noch nicht ausreichend abgesichert. Mit dieser Forschungsarbeit soll geklärt werden, inwieweit sich höhere Anteile an Ziegelbruch auf die Qualität einer ToB auswirken. In Laborversuchen werden getrennt die Eigenschaften der hart- und weichgebrannten Ziegel und auch des Mörtels und Putzes im Hinblick auf den Frostwiderstand, die Schlagfestigkeit sowie die Porosität ermittelt. In RC-Gemischen werden die Auswirkungen unterschiedlicher Anteile der Ziegel bzw. des Mörtel/Putzes, insbesondere die Frostempfindlichkeit, das Tragverhalten sowie die Wasserdurchlässigkeit untersucht. Im Rahmen der Arbeit sollen auch die bisherigen praktischen Erfahrungen mit ziegelreichen RC-Baustoffen erfasst werden. Als Ergebnis sind ggf. Vorschläge für modifizierte Anforderungen an die stoffliche Zusammenstellung für RC-Baustoffe zu erarbeiten.
In Deutschland wird in vielen Städten und Gemeinden das Regenwasser über eine Mischwasserkanalisation zusammen mit dem Abwasser der Haushalte/Kleinindustrien dem Klärwerk zugeführt. Bei Regenereignissen fallen so enorme zusätzliche Wasservolumina im Klärwerk an und müssen - um einen optimalen Betriebszustand beibehalten zu können - im Kanalnetz oder eigens dafür gebauten Rückhaltebecken zwischengespeichert werden. Ökonomischer und - unter dem Aspekt der Grundwasserneubildung - auch ökologischer wäre daher eine direkte Regenwasserversickerung in den Boden vor Ort. Infolge des zunehmenden Straßenverkehrs und anderer Immissionsquellen ist unser Regenwasser heutzutage jedoch nicht frei von Schadstoffen. Dies kann zu einer Belastung des Bodens und des Grundwassers bei der Regenwasserversickerung führen. Deshalb untersucht werden, inwieweit Dachmaterialien als Senke bzw. Quelle für Schadstoffe fungieren können. Bei der unvollständigen Verbrennung von fossilen Brennstoffen entstehen z.B. Verbindungen aus der Klasse der Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK). Einige dieser Verbindungen sind krebserregend und werden frei oder an (Staub-)Partikel adsorbiert mit dem Niederschlag aus der Atmosphäre ausgewaschen. Deshalb wird innerhalb des Projektes die Konzentration der PAK im Regenwasser und den Dachabläufen unterschiedlicher Dachmaterialien (Tonziegel, Betondachsteine, Dachpappe, Titanzink, Kupfer, usw.) als Funktion der Jahreszeit und Regenintensität bestimmt. Gleichzeitig wird auch der Eintrag von Metallen in den Regenwasserabfluss der ausgewählten Dachmaterialen als eine mögliche Schadstoffquelle untersucht. Die Ergebnisse aus den Modelldachexperimenten werden mit Befunden realer Dachflächen verglichen. Eine Hochrechnung des Eintrages größerer Einzugsgebiete erfolgt durch die Ermittlung der Dachflächen und Materialien z.B. mittels Laserscanning und Hyperspektralaufnahmen.
Das Gesamtziel dieses Projektes besteht im Aufbau einer Pilotanlage zur Herstellung von Dämmstoffen auf Basis von Buchenholz sowie der begleitenden Forschungsaktivitäten. In der geplanten Anlage sollen aus Buchenholzfasern flexible Dämmstoffe (Dämmstoffmatten und Holzschäume bzw. Granulate) als Füllstoff für Hohlziegel (lochbildabhängig und lochbildunabhängig) hergestellt werden.
Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Mit unserem Vorhaben gehen wir den nächsten Schritt in Richtung einer CO2-neutralen Produktion von Ziegeln! Dafür bauen wir auf den Erfahrungen und Ergebnissen aus dem Forschungsvorhaben BioBrick (FKZ 03EI5410A-C) auf. Mit BioBrick2 knüpfen wir an und schaffen verallgemeinerungsfähiges Wissen und Know-how im Hinblick auf die Integration von Bioenergie als Quelle für industrielle Hochtemperaturanwendungen. Das Demonstrationsvorhaben schlägt dabei eine Brücke von den erfolgreichen Labor- und Technikumsversuchen hin zu einem realen Praxistest im Ziegelwerk und ist die Basis für eine spätere Umrüstung des Ziegelwerks auf eine klimaneutrale Produktion. Dabei wird die Hochtemperatur-Prozesswärme im Ziegelwerk Schüttdorf der ABC Klinkergruppe GmbH aus dem Synthesegas eines Holzvergasers (Burkhardt GmbH) bereitgestellt. Die Prozessintegration aller untersuchten Verfahrensschritte wird durch die technoökonomische und ökologische Bewertung für den nachfolgenden Realbetrieb ausgearbeitet. Das Projekt zeichnet sich durch großes Engagement der beteiligten Industriepartner und ein hohes Maß an Praxisnähe aus. Es wird koordiniert von Fraunhofer UMSICHT, die Fa. Burkhardt GmbH begleitet als Anlagenhersteller das Vorhaben und das Ziegelwerk Schüttorf dient als Referenzbetrieb für die Ziegelbranche.
Hauptziel des beantragten Projektes Hybrid-Fire ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln die es ermöglich CO2-arm bzw. CO2-frei zu Arbeiten. Die Grundlagen hierfür soll umweltfreundlich erzeugter H2 sowie Elektroenergie darstellen. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch H2 ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegel, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark CO2-lastige Verfahren CO2-arm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (keram. Werkstoff sowie Stahl) umfangreiche Forschungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid-beheizten Demonstrator zu konzipieren und für umfangreiche Versuche mit den genannten Produktgruppen zu bauen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an H2O-dampf bzw. H2-gehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sinter- bzw. Schmelztechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die Erkenntnisse auch auf weitere Ofenanlagen zu übertragen bzw. auch auf andere Industriezweige mit ähnlichen temperaturintensiven Technologien zu adaptieren.
Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz zum Einsatz unter industriellen Bedingungen kommen und erprobt werden. Am Ende des Projektes soll es möglich sein die gewonnenen Erkenntnisse auch auf weitere kontin (Text abgebrochen)
Kernanliegen des Vorhabens ist es, einen Überblick darüber zu gewinnen, wie sich Bauabfälle einer stofflichen Verwertung zuleiten lassen und dabei möglichst in gleicher oder anderer Funktionalität wieder in Bauprodukte zurückgeführt werden können, bevor sie in eine anderweitige bzw. thermische Verwertung gelangen. Ziel ist die Herbeiführung einer verbesserten Kreislaufwirtschaft im Bereich der Bauwirtschaft. Ausgangslage: Mit dem Beschluss der Bundesregierung 'Nachhaltiges Deutschland' wurde als einer der Leitindikatoren die Ressourceneffizienz bestimmt. Darin wird gefordert, die Ressourceneffizienz vom Niveau 1990 bis 2020 um 50Prozent zu steigern. Da der Indikator aus dem Quotient von BIP und Materialumsatz in Tonnen gemessen wird, hat das Bauwesen mit den eingesetzten Massenbaustoffen einen hohen Anteil (ca. 50Prozent). Die Anforderungen an Bauwerke sind maßgeblich durch die gesellschaftlichen Vorgaben definiert. Da zudem die Wertschöpfung bezogen auf die Masse der Substanz im Verhältnis zu anderen Wirtschaftszweigen gering ist, sind Ressourceneinsparungen schwieriger zu realisieren als bei anderen Produktbereichen. In Deutschland werden nach Angaben der Bauwirtschaft bereits annähernd 90Prozent des entstehenden Abfalls verwertet und ein hoher Anteil davon recycelt (Nachnutzung). Dennoch fallen am Ende des Lebenszyklus nach wie vor Bauabfälle in der Größenordnung von 32,5 Mio. Tonnen an, die nicht dem Recycling, sondern der 'sonstigen Verwertung' zugeführt werden. Ziel: Das Projekt hat das Ziel, Potenziale zur Steigerung eines hochwertigen Recyclings bei Bauschutt und Baustellenabfällen zu untersuchen. Hierfür werden die derzeitigen Stoffströme der Massenbaustoffe Beton, Ziegel, Kalksandstein, Porenbeton, Gips, Holz, Mineralwolle und Hartschaumdammstoffe, Glas und Kunststoffe analysiert und zwei Szenarien für 2030 aufgestellt. Dabei sollen typische Hemmnisse bei der Steigerung der Kreislaufführung von Baumaterialien aufgezeigt werden. Für die Potenzialabschätzung werden vorab Herkunft, Zusammensetzung und Verwertungswege der genannten Materialfraktionen überschlägig ermittelt. Einen Schwerpunkt der Betrachtung bilden die technischen Möglichkeiten zur Steigerung der Kreislaufführung durch höherwertige Verwertung der Abfallströme des Bauwesens. Innovative Recycling- und Verwertungstechnologien kommen zur Bewertung. Zusätzlich zu den Verfahren zur Gewinnung hochwertiger Rezyklate und deren Optimierungspotenzialen sollen Aufnahmekapazitäten des Bauwesens für mögliche recycelbare Stoffmengen entlang der Bautätigkeit 2010 bis 2030 eingeschätzt werden.
Origin | Count |
---|---|
Bund | 244 |
Kommune | 6 |
Land | 35 |
Wissenschaft | 6 |
Type | Count |
---|---|
Daten und Messstellen | 7 |
Ereignis | 1 |
Förderprogramm | 208 |
Text | 39 |
Umweltprüfung | 5 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 50 |
offen | 225 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 260 |
Englisch | 44 |
Resource type | Count |
---|---|
Archiv | 6 |
Bild | 2 |
Datei | 11 |
Dokument | 23 |
Keine | 201 |
Webdienst | 9 |
Webseite | 52 |
Topic | Count |
---|---|
Boden | 201 |
Lebewesen und Lebensräume | 193 |
Luft | 144 |
Mensch und Umwelt | 283 |
Wasser | 138 |
Weitere | 259 |