Das Ziel des Vorhabens besteht in der Entwicklung einer instationären Methode, welche mit Hilfe bildgebender Systeme die Ermittlung der Haftungseigenschaften keramischer Wärmedämmschichten (englisch: Thermal Barrier Coatings, TBCs) für den Einsatz in Kraftwerksturbinen ermöglicht. Die zu entwickelnde Methode soll sowohl während des Betriebs der Turbinen als auch während der Schichtherstellung zum Einsatz kommen. Die zerstörungsfreie Überwachung der Schichten reduziert die Anzahl der Wartungsintervalle in denen die Turbine stillsteht und die Schaufeln evtl. ausgetauscht werden müssen, wodurch die Ressourcen- und Kosteneffizienz erhöht wird. Durch eine Verbesserung der Schichteigenschaften können höhere Betriebstemperaturen gefahren werden, was den Wirkungsgrad der Turbine erhöht. Daher sollen speziell die Haftungseigenschaften der TBCs durch eine Optimierung der Prozessparameter verbessert werden. Dafür werden die zur Verfügung stehenden thermischen Spritzverfahren entsprechend angepasst und die Parameter maßgeschneidert eingestellt. Insgesamt liefert das Vorhaben damit einen Beitrag zur Erhöhung Ressourcen- und Energieeffizienz von Kraftwerksturbinen. Rauschert wird Wärmedämmschichten auf Basis von Oxidkeramiken (vor allem Aluminiumoxid oder mit Yttriumoxid teilstabilisiertes Zirkonoxid) mittels thermischer Spritzverfahren auf Substrate aufbringen, die in der Kraftwerkstechnik eingesetzt werden. Dabei werden durch Variation der Prozessparameter und der Schichtzusammensetzung Schichten mit unterschiedlichen Haftungseigenschaften präpariert, die dann entsprechend von den Projektpartnern FHWS und ZAE Bayern charakterisiert werden. Darüber hinaus wird Rauschert bei der Entwicklung des Messverfahrens zur Bestimmung der Haftungseigenschaften mitwirken und entsprechende Messungen auch während der Schichtpräparation durchführen. Basierend auf den Untersuchungsergebnissen werden von Rauschert schließlich Schichten mit optimierten Haftungseigenschaften entwickelt.
Ziel dieses Vorhabens ist die Reduktion von Tierversuchen im Bereich der akuten Inhalationstoxikologie durch Einsatz einer standardisierten in vitro Direktexpositionsmethode zur Untersuchung partikelhaltiger Atmosphären und Bestimmung des zytotoxischen und inflammatorischen Potentials der betreffenden Teststäube. Die Daten werden zur Beurteilung der Intra- und Inter-Laboratoriumsvariabilität herangezogen und müssen sowohl Aufschluss über deren Reproduzierbarkeit, Robustheit und Stabilität geben, als auch die Grundlage für die Prävalidierung der Methode liefern. Zu Projektbeginn werden die experimentellen Voraussetzungen geschaffen, um die unter den prüfungsspezifischen Bedingungen notwendigen Anforderungen an das In-vitro-System zu realisieren. Gleichzeitig werden Methoden etabliert und evaluiert, die zur Exposition der kultivierten Zellen mit Partikeln, der Charakterisierung der Expositionsatmosphäre sowie der Bestimmung der biologischen Endpunkte notwendig sind. Im nächsten Schritt werden Expositionen mit ausgewählten Partikeln (DQ12, TiO2-P25, CB14, ZnO, BaSO4, ALOOH I, CeO2, ZrO2, CuO nano und CuO micro) in den 3 Expositionslaboratorien durchgeführt. Die Auswahl der Stoffe richtet sich nach deren Toxizität, Verfügbarkeit, dem Handling und ihrem Status als Referenzsubstanzen für inhalationstoxikologische Untersuchungen. Abschließend erfolgt anhand der ermittelten Datenlage eine Bewertung der In-vitro-Methode (Prävalidierung) und die Erstellung eines Prädiktionsmodells.
Ueber ein besonderes Verfahren, den Sol-Gel-Prozess, werden Ultrafiltrationsmembranen mit Poren groesser 5 nm hergestellt. Es gelang, im Labormassstab derartige Membranen aus den thermisch und chemisch besonders stabilen keramischen Systemen ZrO2, TiO2 und TiN zu entwickeln. Tests mit den neuartigen keramischen Filtern ergaben, dass das Separieren von Dextranmolekuelen mit einer Molmasse von 110.000 g/mol aus Wasser moeglich ist.
Ausgangspunkt der Forschung war die nasschemische Herstellung (Abwandlung des Sol-Gel-Verfahrens) von Titanoxid und auch Zinkoxid als amorphe oder kristalline Metalloxid-Nanopartikel und deren optionale Weiterverarbeitung in konzentrierten Dispersionen unter Einsparung von Lösungsmitteln. Die Arbeitsgruppe von Prof. Dr. Smarsly konnte dabei in den vergangenen Jahren u.a. bemerkenswerte Fortschritte hinsichtlich der Mikrowellensynthese von Zirkoniumdioxid-Teilchen erreichen und die Ausbeuten erheblich steigern, so dass Produktionsmengen bis in den Kilogramm-Bereich / die Produktion im kg-Bereich im Labor möglich geworden ist (sind). An sich ist die Synthese auch noch weiterhin bis zu einem industriellen Level hochskalierbar, so dass die Produktion nicht nur im kg-Bereich, sondern zukünftig auch im Tonnen-Maßstab ermöglicht wird. Wesentliche Ziele sind die Nutzbarmachung des Mikrowellen-gestützten ZrO2-Syntheseverfahrens für weitere Partikel und Erzeugung von Nanokeramikschutzschichten auf unterschiedlichen Oberflächen. Weiterhin wird die Entwicklung eines Konzepts für das Recycling nicht verbrauchter Lösungsmittel nach einer Mikrowellensynthese fokussiert. Das Gesamtprojekt ist auf eine Laufzeit von 12 Monaten ausgelegt und gliedert sich in die folgenden zwei Projektabschnitte, welche jeweils die Hälfte der Projektdauer einnehmen werden: 1. Übertragung des Mikrowellen-gestützten ZrO2-Syntheseverfahrens auf ATO, GeO2, TiO2, YSZ 2. Herstellung hochreiner, kristalliner (ultra-)dünner Nanokeramikschutzschichten auf Basis von ZrO2/YSZ-Dispersionen auf verschiedenen Model-Substraten wie Aluminium, Messing, Stahl, Kunststoff (PC, PE, PP usw.).