Der Südatlantik stellt für die Rolle des Nordatlantischen Tiefenwassers (NADW) in der globalen Tiefenwasserzirkulation ('convoy belt') eine Schlüsselregion dar. In dem Vorhaben soll der komplette südatlantische WOCE-Tracerdatensatz zusammen mit weiteren Daten (insbesondere US Programm SAVE) im Bereich des NADW analysiert werden mit dem Ziel, aufbauend auf dem vorliegenden Wissen die Wege und Raten des NADW vom Eintritt am Äquator bis zum Übertritt in den Antarktischen Zirkumpolarstrom weiter aufzuklären. Hierbei soll zwischen den verschiedenen Stockwerken des NADW differenziert werden. Wichtige Teilfragen sind der Austausch des Westlichen Randstroms mit den Wässern östlich hiervon bis hin zum afrikanischen Kontinentalabhang, wobei dem Mittelatlantischen Rücken vermutlich eine besondere Rolle zukommt, sowie der Grad der Rezirkulation des westlichen Randstroms. Die Untersuchung wird sich ausschließlich auf vorhandene Datensätze stützen, Feldarbeiten sind nicht vorgesehen. Ein Vergleich mit Strömungs- und Tracerfeldern eines hochauflösenden Zirkulationsmodells (C. Böning) soll die Untersuchung unterstützen und gleichzeitig den Realitätsgrad der Modellfelder überprüfen.
The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.
Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.
Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.
PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.
Gegenstand des Vorhabens ist die organisch-geochemische Untersuchung von diatomeenspezifischen organischen Verbindungen (Biomarker) aus Sedimenten des Südpolarmeeres für die letzten ca. 150.000 Jahre. Diatomeen sind die wichtigsten Primärproduzenten südlich der heutigen Antarktischen Polarfront. Die Kohlenstoffisotope und Anteile der in den Sedimenten überlieferten Biomarker aus Diatomeen spiegeln unmittelbare Veränderungen in der Meerwasserchemie, ozeanischen Zirkulation und der Primärproduktivität wider und sind daher ein ausgezeichneter Indikator für klimagekoppelte Umweltveränderungen. Die Untersuchungen basieren auf etablierten Methoden der organischen Geochemie, Biomarkenanalytik und Isotopengeochemie und sind somit ohne methodische Neuentwicklungen durchzuführen.
In NOSTHEM sollen zonale Unterschiede des mittleren Windes, Gezeitenparameter, planetarer Wellen und Schwerewellen in der Mesosphäre und unteren Thermosphäre untersucht und erklärt werden. Ihr Einfluss auf die Repräsentativität einzelner Messungen für ein zonales Mittel von mittlerem Wind und Wellen wird bestimmt werden. Dies soll eine quantitative Einschätzung der Unsicherheiten von mittlerer Klimatologie, Langzeittrends und Maßen für die Variabilität auf der Basis einzelner Messungen ermöglichen. Der Beitrag nicht-zonaler Strukturen auf die mittlere Zirkulation und ihre Variabilität wird bestimmt. Hemisphärische Analysen von Wellen und Zirkulation in der unteren und mittleren Atmosphäre werden verwendet, um deren Rolle bei der Bildung longitudinaler Unterschiede zu klären. Dies wird auch die Frage beantworten, ob die schon seit langem beobachteten Unterschiede des mesosphärischen Windes über Mittel- und Osteuropa signifikant sind und wenn ja, welche Prozesse zu deren Auftreten beitragen.In NOSTHEM werden Beobachtungen zweier praktisch identischer VHF-Meteorradare auf ähnlicher geographischer Breite, aber mit 36° Längenunterschied herangezogen. Daher kann daraus der Beitrag nicht-zonaler Strukturen zur lokalen Klimatologie und Variabilität ermittelt werden. Um ein umfassendes hemisphärisches Bild zu erhalten, werden die lokalen Radarmessungen durch Satellitenbeobachtungen und Reanalysedaten ergänzt, sowie numerische Simulationen mit einem Zirkulationsmodell der mittleren Atmosphäre durchgeführt.Die Hauptziele von NOSTHEM sind (1) eine quantitative Darstellung von Ähnlichkeiten und Unterschieden der mesosphärischen/thermosphärischen Zirkulation an zwei Längengraden, (2) eine Erweiterung dieser Analyse durch hemisphärische Daten und (3) eine Quantifizierung der Rolle von Wellen bei der Ausprägung der Zirkulation an einzelnen Orten. Als Endziel werden nicht-zonale Strukturen und ihre Gründe und die zu ihnen führenden Prozesse geklärt, und auch Hinweise für die Interpretation von Klimatologie und Variabilität an einzelnen Orten in Bezug auf die gesamthemisphärische Dynamik gegeben.NOSTHEM wird als Kooperation des Instituts für Meteorologie, Universität Leipzig und des radiophysikalischen Departments, Universität Kasan gemeinsam durchgeführt.
Es wird ein Experiment aufgebaut, in dem Dichteunterschiede in einem Fluid sowohl durch Temperatur als auch unterschiedliche Ionenkonzentration erzeugt werden. Ionenflüsse werden elektrochemisch kontrolliert. Das Experiment soll ein Modell für die thermohaline Zirkulation werden.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
| Origin | Count |
|---|---|
| Bund | 583 |
| Land | 1 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 582 |
| unbekannt | 1 |
| License | Count |
|---|---|
| offen | 583 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 432 |
| Englisch | 222 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 1 |
| Keine | 410 |
| Webseite | 173 |
| Topic | Count |
|---|---|
| Boden | 467 |
| Lebewesen und Lebensräume | 472 |
| Luft | 465 |
| Mensch und Umwelt | 580 |
| Wasser | 501 |
| Weitere | 584 |