Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.
Im Projekt 'Circulation and Climate of the Indian Ocean' (CICIO) wird beantragt, die Zirkulation des westlichen Südindischen Ozeans mit profilierenden Tiefendriftern (Typ APEX) zu untersuchen, die auf flachen Trajektorien (200 m und 400 m) mit den Wassermassen mittreiben und alle 10 Tage Profile von Temperatur und Salzgehalt bis 2000 m messen und über Satelliten (ARGOS) absetzen. ... Die Arbeiten haben folgende Zielsetzungen: - Verbesserte Kenntnis der mittleren Zirkulation; Verfolgung des durch die Indonesischen Passagen eindringenden Pazifik-Wassers sowie des in der Südhemisphäre im Winter bei Abkühlung in die Sprungschicht eingetragenen (subduzierten) Wassers mit dem Südäquatorialstrom nach Westen, anteilige Aufspaltung in Somalistrom bzw. Verlassen des subtropischen Indischen Ozeans nach Süden und damit auch ein Beitrag zur Bestimmung der Ankopplung des Indischen Ozeans an das Weltmeer. - Untersuchung der Zusammenhänge zwischen Sprungschichtvariabilität im Auftrieb in der Auftriebszone bei 5-10 Grad S und deren Relevanz für die atmosphärische Variabilität. Diese Zone nimmt nach neuen Erkenntnissen eine Schlüsselrolle für die Niederschlagsvariabilität über Ostafrika ein. - Beitrag zu ARGO: Das Vorhaben soll auch ein deutscher Beitrag zum internationalen Programm ARGO ('Array for Real-time Geostrophic Oceanography') sein, mit dem in den kommenden drei Jahren derartige Floats alle Ozeane (mit einer geplanten Gesamtzahl von ca. 3000) abdecken sollen, um die Rolle des Ozeans für Klimaschwankungen besser verstehen zu können. Die Auswertung der Beobachtungen wird großteils in internationaler Absprache mit anderen ARGO-Gruppen des Indischen Ozeans (besonders USA und Frankreich) erfolgen.
Vorgesehen sind Bau, Optimierung und Demonstrationsbetrieb einer 2 MW-Wirbelschichtfeuerung. Kernstueck ist ein neugestalteter Kessel mit der WSF der 2. Generation. Die neue Technik kombiniert die Entschwefelung durch Additivzugabe mit der NOx-Minderung durch Stufung der Luftzufuhr und entsprechend gestaltete Brennstoffaufgabe sowie durch interne Feststoffrezirkulation. Sie fuehrt daher zu geringen Emissionen bei gleichzeitig hohem Ausbrand und kompakter Bauweise.
Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.
PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.
Ziel des Projektes ist eine Bestandsaufnahme der Wassermassenverteilung und der Zirkulation im Arktischen Ozean. Stabile Sauerstoffisotopen (delta18O) des Wassers ist ein konservativer Tracer und werden zusammen mit hydrochemischen Daten dazu verwendet das vom Schelf stammende Süßwasser (Flusswasser und Meereis-Schmelze oder Bildung) und die aus dem Pazifik stammende Komponente zu untersuchen. Auf diese Weise wird der Einfluss dieser Wassermassen in der arktischen Salzgehaltsschichtung (Halokline), dem Atlantischen Zwischenwasser und dem Tiefen- und Bodenwasser des Arktischen Ozeans quantifiziert werden. Es ist bekannt, dass die Verteilung der Pazifischen Komponente starken Veränderungen auf dekadischen Zeitskalen unterliegt aber auch in den Süßwasserverteilungen im Transpolaren Drift Strom wurden 2007 starke Variationen beobachtet welche somit auf zusätzliche jährliche Variationen hinweisen. Es ist nicht bekannt ob die 2007 beobachteten Variationen ein permanentes Phänomen sind und ob diese mit dem weitgehenden Fehlen des Pazifischen Wassers in diesem Zeitraum zusammenhängen. Die geplante flächendeckende und quantitative Erfassung der Süßwasserverteilung und des Pazifischen Wassers werden daher dazu beitragen, den Einfluss und die möglichen Rückkopplungsmechanismen der arktischen Hydrographie auf den arktischen und globalen Klimawandel weitergehend zu verstehen.
The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.
Turbulente Konvektion in Wasser wird in einer würfelförmigen Zelle mit optischen Methoden und lokaler Temperaturmessung untersucht, um sowohl kleinskalige kohärente Strukturen als auch langsame Variationen der großskaligen Zirkulation zu entdecken.
Die lakustrinen Ablagerungen an den beiden ICDP Sites Chalco (Zentralmexiko) und Petén Itzá (nördliches Guatemala) eröffnen die Gelegenheit Ursachen und Folgen eines sich veränderten kontinentalen Klimas in den nördlichen Neotropen während des letzten Glazial-/Interglazialzyklus zu rekonstruieren. Trotz ihrer vergleichsweise nahen geographischen Lage, zeigen beide Archive deutliche Unterschiede hinsichtlich ihrer klimatischen Entwicklung, insbesondere während des Zeitintervalls zwischen 85 und 50 tausend Jahren, der letzten Vereisungsphase und der Kältephase des Heinrich Stadials (HS) 1. Um die zeitliche und räumliche Entwicklung des Klimas und dessen Effekt auf aquatische und terrestrische Ökosysteme in den nördlichen Neotropen, einer Region von zentraler Bedeutung für globale Klimadynamiken zu rekonstruieren, planen wir beide ICDP Sites mit einem Multiproxyansatz zusammen mit Paläoklimamodellierung in hoher Auflösung zu untersuchen.Unser Ansatz umfasst Untersuchungen beider sedimentärer Archive mit Hilfe von bulk-geochemischen Methoden, Biomarkern und organischen Temperaturproxies mit Paläobioindikatoren und Paläoklimasimulationen über den Zeitraum des letzten Glazial-/Interglazialzyklus (ca. 135 Tausend Jahre) um den (1) Effekt von Klimaveränderungen auf aquatische und terrestrische Ökosysteme (z.B. während der HS 1 bis 6) zu bestimmen und (2) den Einfluss von sich veränderten Ozeanströmungsmustern, wie der Atlantic Meridional Overturning Circulation und der Pacific Ocean Circulation, insbesondere während ausgezeichneter Kalt- und Warmphasen, auf das regionale Klima und das Ökosystem der nördlichen Neotropen festzulegen. Um die proxybasierten Klimarekonstruktionen der Chalco und Petén Itzá Ablagerungen in einen transregionalen Kontext zu stellen, werden wir unsere Ergebnisse mit denen von anderen kontinentalen und marinen Klimaarchiven aus den Neotropen vergleichen. Potentielle 'climate forcing mechanisms' werden mit Hilfe von hoch-aufgelösten Paläoklimasimulationen unter der Verwendung des 'Community Earth System Model (CESM 1)' für Zeitintervalle, die durch kontrastierenden Klimabedingungen zwischen beiden Lokationen ausgezeichnet sind, bestimmt. Ziel der Untersuchungen ist die detaillierte Rekonstruktion der räumlichen und zeitlichen Entwicklung der Klimageschichte der nördlichen Neotropen in Abhängigkeit von sich verändernden Ozeanzirkulationsmustern über die letzten 135 tausend Jahre zu verstehen und zu untersuchen wie und in welcher Geschwindigkeit sich aquatische und terrestrische Ökosysteme an beiden ICDP Lokationen an sich ändernde Umweltbedingungen angepasst haben. Dies ist von entscheidender Bedeutung um vorherzusagen, wie sich die sensiblen Ökosysteme der Neotropen unter einem sich zu erwartendem trockeneren und wärmeren Klima entwickeln werden.
Änderungen der Verteilung von Spurenstoffen wie Wasserdampf und Ozon, sowie die Verteilung von Zirruspartikeln in der unteren Stratosphäre/oberen Troposphäre (UTLS) haben einen großen Einfluss auf den Strahlungsantrieb. Unsicherheiten in der Beschreibung von Mischungsprozessen führen zu großen Unsicherheiten der Abschätzung des Strahlungsantriebs und sind deshalb von großer Bedeutung für die Quantifizierung des Klimawandels. Deshalb ist es wichtig, physikalische und chemische Prozesse (z.B. Austauschprozesse von Luftmassen, Zirrusbildung) zu quantifizieren, die die Zusammensetzung der UTLS bestimmen. Die sogenannte 'overworld' oberhalb von Theta=380K beeinflusst unmittelbar die Zusammensetzung der extratropischen Stratosphäre im Sommer durch Luftmassen, die aus der Region der asiatischen Monsunzirkulation stammen. Brechende planetare Wellen transportieren Monsun beeinflusste Luft in höhere Breiten, wo sie zum dortigen Wasserdampf- und Spurenstoffbudget beitragen. Die untere Grenze der UTLS, die extratropische Tropopausenschicht (ExTL), wird durch schnellen und effizienten bidirektionalen (quasi-isentropen) Austausch mit der Troposphäre gekennzeichnet. Die obere Grenze der der ExTL korrespondiert mit der Lage der Tropopauseninversionsschicht (TIL), die eine Region erhöhter statischer Stabilität oberhalb der Tropopause darstellt. Der Einfluss infrarotaktiver Tracer wie Wasserdampf oder Ozon auf die Temperaturstruktur macht die TIL zu einem sensitiven Indikator für Änderungen des Wasserdampf- oder Ozongehaltes oder auch Änderungen der Tropopausen Temperatur. Diese wirkt auf den Wasserdampfgehalt, der wiederum die statische Stabilität beeinflusst. WISE untersucht den Zusammenhang zwischen Zusammensetzung und der dynamischen Struktur der UTLS innerhalb der folgenden vier Hauptthemen:- Zusammenhang zwischen TIL und Spurengasverteilung in der unteren Stratosphäre- Wellenbrechung von planetaren Wellen und Wasserdampftransport in die extratropische untere Stratosphäre - Halogenierte Substanzen und deren Effekt auf Ozon in der UTLS- Nichtsichtbare Zirruspartikel und deren Effekt auf die UTLSBei WISE werden diese Themen mit einer neuartigen Nutzlast untersucht, die 2D- und 3D-Messungen von Spurenstoffen und Temperatur, Dropsondendaten und hochaufgelöste in-situ Spurengasmessungen vereint. Eine einzigartige Kombination von Limb- und Nadirmessngen wird verwendet, um die Eigenschaften optisch dünner Zirren in der UTLS Region zu untersuchen. Hochpräzise in-situ Daten erlauben detaillierte Untersuchungen zu Mischungsprozessen mit hoher Auflösung, sowie Zeitskalen und Altersbestimmung der Luft. WISE wird im September / Oktober stattfinden, und daher unmittelbar den Einfluss des sich auflösenden Monsuns auf die extratropische UTLS vermessen. Durch die Kombination mit Lagrange'schen und prozessorientierten Modellen wird der relative Beitrag verschiedener Quellregionen als auch Transportzeitskalen und Prozesse quantifiziert.
| Origin | Count |
|---|---|
| Bund | 583 |
| Land | 1 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 582 |
| unbekannt | 1 |
| License | Count |
|---|---|
| offen | 583 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 432 |
| Englisch | 222 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 1 |
| Keine | 410 |
| Webseite | 173 |
| Topic | Count |
|---|---|
| Boden | 467 |
| Lebewesen und Lebensräume | 472 |
| Luft | 465 |
| Mensch und Umwelt | 580 |
| Wasser | 501 |
| Weitere | 584 |