Es wird angenommen, dass Süßwasser Einträge während Entgletscherungsereignissen einen wichtigen Einfluss auf die globale geostrophische Zirkulation haben, da die Tiefenwasserbildung und Strömungszirkulation durch plötzliche Temperatur- und Salinitätsabfällen beeinträchtigt oder unterbrochen werden können. Dieser Vorgang kann zu globalen Veränderungen des Klimas führen. Der Ostkanadische Schild und der Kontinentalhang vor Labrador sind Schlüsselregionen für paläoklimatische, sowie paläozeanographische Untersuchungen. Große vergangene und rezente Eisschilde beeinflussten das gesamte Gebiet und entwässerten in die Regionen des Labrador Schelfs entweder direkt durch den Laurentidischen Eisschild oder indirekt durch die Hudson Bucht / Davis Strait durch den Inuitischen- und Grönländischen Eisschild. Bis jetzt wurden Information über die Dynamik des Laurentidischen Eisschilds hauptsächlich aus Sedimentkernen aus den Eis-distalen Bereichen wie der Labradorsee und dem Nord Atlantik abgeleitet. Auf dem Labradorschelf wurden hauptsächlich Untersuchungen an Holozänen Sequenzen durchgeführt und Informationen über glaziale Ablagerungen sind eher selten. Informationen aus dem Bereich des Festlands beziehen sich meistens auf die Datierung und die Beschreibung von geomorphologischen Merkmalen, jedoch fehlen kontinuierliche Archive oder Informationen zu Strukturen, die älter als die aufgeschlossenen glazialen Ablagerungen sind. Während der letzten fünf Jahre haben wir verschiedene seismische-, bathymetrische und Echolot Datensätze auf dem Labradorschelf, im Melville See und im Manicouagan See aufgezeichnet. Die Daten zeigen das Vorkommen von erhaltenen oder teilweise überlagerten glazialen Strukturen wie Moränen, Drumlins, groß-skaligen glazialen Lineationen und Eisbergschrammen. Diese vorgeschlagenen Studie fokussiert sich auf die Untersuchung des marinen Endmembers auf dem Labradorschelf, der brackischen Übergangszone in der Hudson Bucht / Straße und dem terrestrischen Endmember im Manicouagan See. Seismische und hydroakustischen Daten werden untersucht um den Verlauf des Laurentidischen Eisschilds während vergangenen (prä-Wisconsian) Vereisungen zu rekonstruieren und Orte, die möglicherweise lange paläoklimatische- und paläozeanographische Archive aufweisen, identifiziert. Das Ziel dieser Studie ist die Identifikation von potentiellen Bohrlokationen, die lange, ungestörte geologische Archive mit prä-Holozäner Ablagerungen aufweisen. Diese Erkenntnisse werden eine solide Basis für einen zukünftigen MagellanPlus Workshop darstellen um eine Bohrgemeinschaft zu bilden, die ein zukünftiges amphibisches IODP-ICDP Bohrproject initiieren wird.
Dieser Datenbestand dient der Analyse atmosphärischer Zirkulationsbedingungen (Wetterlagen, NAO) im nordatlantisch-mitteleuropäischen Sektor wie sie von Reanalyse- und globalen Klimamodellen (Status: 2010) simuliert werden. Ausgewählt wurden solche Klimamodelläufe, die für Mitteleuropa oder Deutschland regionalisiert wurden. Mit dem Datenbestand kann einerseits die Eignung der verschiedenen Modelle zur Reproduktion der beobachteten Zirkulationsverhälnisse (1950-2000) geprüft werden. Andererseits können simulierte Änderungen (2001-2100) ausgewertet werden. Zusätzlich werden Temperatur -und Niederschlagsdaten bereitgestellt, mit denen die Wetterwirksamkeit der Wetterlagen je GCM bewertet werden kann.
Unter Verwendung monatlich gemittelter Wind- und Temperaturfelder wird die troposphaerische Hintergrund-Chemie in ihren wesentlichen Reaktionswegen simuliert. Die allgemeine Windzirkulation mischt stratosphaerisches Ozon in die Troposphaere ein. In der unbelasteten Troposphaere wird dieses Ozon grundsaetzlich photochemisch abgebaut. Das Vorhandensein von Stickoxyden kann aber auf katalytischem Wege im Zuge der Methanoxidation auch zur Produktion von troposphaerischem Ozon fuehren. Das Modell ist in der Lage diese Vorgaenge auf einem 10 Grad mal 10 Grad mal 100 hPa Gitter in 2h-Schritten ueber mehrere Jahre zu simulieren. An der Erweiterung der Modellchemie (auch Wolkenchemie) wird gearbeitet.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Im Projekt 'Circulation and Climate of the Indian Ocean' (CICIO) wird beantragt, die Zirkulation des westlichen Südindischen Ozeans mit profilierenden Tiefendriftern (Typ APEX) zu untersuchen, die auf flachen Trajektorien (200 m und 400 m) mit den Wassermassen mittreiben und alle 10 Tage Profile von Temperatur und Salzgehalt bis 2000 m messen und über Satelliten (ARGOS) absetzen. ... Die Arbeiten haben folgende Zielsetzungen: - Verbesserte Kenntnis der mittleren Zirkulation; Verfolgung des durch die Indonesischen Passagen eindringenden Pazifik-Wassers sowie des in der Südhemisphäre im Winter bei Abkühlung in die Sprungschicht eingetragenen (subduzierten) Wassers mit dem Südäquatorialstrom nach Westen, anteilige Aufspaltung in Somalistrom bzw. Verlassen des subtropischen Indischen Ozeans nach Süden und damit auch ein Beitrag zur Bestimmung der Ankopplung des Indischen Ozeans an das Weltmeer. - Untersuchung der Zusammenhänge zwischen Sprungschichtvariabilität im Auftrieb in der Auftriebszone bei 5-10 Grad S und deren Relevanz für die atmosphärische Variabilität. Diese Zone nimmt nach neuen Erkenntnissen eine Schlüsselrolle für die Niederschlagsvariabilität über Ostafrika ein. - Beitrag zu ARGO: Das Vorhaben soll auch ein deutscher Beitrag zum internationalen Programm ARGO ('Array for Real-time Geostrophic Oceanography') sein, mit dem in den kommenden drei Jahren derartige Floats alle Ozeane (mit einer geplanten Gesamtzahl von ca. 3000) abdecken sollen, um die Rolle des Ozeans für Klimaschwankungen besser verstehen zu können. Die Auswertung der Beobachtungen wird großteils in internationaler Absprache mit anderen ARGO-Gruppen des Indischen Ozeans (besonders USA und Frankreich) erfolgen.
Vorgesehen sind Bau, Optimierung und Demonstrationsbetrieb einer 2 MW-Wirbelschichtfeuerung. Kernstueck ist ein neugestalteter Kessel mit der WSF der 2. Generation. Die neue Technik kombiniert die Entschwefelung durch Additivzugabe mit der NOx-Minderung durch Stufung der Luftzufuhr und entsprechend gestaltete Brennstoffaufgabe sowie durch interne Feststoffrezirkulation. Sie fuehrt daher zu geringen Emissionen bei gleichzeitig hohem Ausbrand und kompakter Bauweise.
Die Dynamik der Mesosphäre und unteren Thermosphäre wird zu großen Teilen von solaren Gezeiten dominiert. Eine davon ist die 6-stündige Gezeit (quarterdiurnal tide, QDT), die unter anderem in sporadischen E-Schichten und mit Hilfe von Radar- und Satellitenmessungen beobachtet wurde. Während allerdings die ganztägigen, halbtägigen, und auch 8-stündigen Gezeiten vergleichsweise gut dokumentiert und untersucht sind, sind Beobachtungen und Analysen der - weniger starken aber nichtsdestoweniger als ein Bestandteil der dynamischen Prozesse in ihrer Gesamtheit zu sehenden - 6-stündigen Komponente bislang selten. Um diese Lücke zu schließen, werden innerhalb des QuarTA-Projekts die 6-stündigen Gezeiten und ihre Antriebsmechanismen im Detail untersucht. Die Klimatologie der Gezeiten wir mit Hilfe von Meteorradarwindmessungen, vor allem der Langzeitreihe in Collm, ergänzt durch weitere Radarmessungen, erstellt. Die globale Verteilung der Gezeitenamplituden wird mit Hilfe von Ionosonden- und GPS-Radiookkultationsmessungen sporadischer E-Schichten untersucht, und die Beobachtungen in Verbindung mit Windscherungen aus Radarmessungen und numerischen Simulationen interpretiert. Um Einblick in die hauptsächlichen Anregungsmechanismen der 6-stündigen Gezeiten zu erhalten, wird ein nichtlineares mechanistisches Zirkulationsmodell, welches auch die Anregung durch Absorption solarer Strahlung enthält, verwendet. Hierbei wird, einzeln und in Kombination, die Anregung der 6-stündigen Gezeit durch Absorption solarer Strahlung und durch nichtlineare Wechselwirkung von Gezeiten in den Simulationen ausgeschaltet, so dass die Hauptantriebsquelle erkennbar wird. Innerhalb des QuarTA-Projekts wird daher, durch die Kombination von Beobachtungen und Modellsimulationen, ein vertiefter Einblick in die Klimatologie und die Anregung der 6-stündigen Gezeiten ermöglicht, der bislang noch nicht in ausreichendem Maße gegeben ist.
Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.
Der weit nach Süden vordringende Keil Südamerikas ist weltweit die einzige nennenswerte Landmasse zwischen ca. 45° und 60°Süd. Das senkrecht zur Hauptwindrichtung verlaufende Andengebirge stellt eine wirksame Barriere für die Westwinddrift dar und hat einen bestimmenden Einfluss auf die hemisphärische Zirkulation sowie das lokale Wettergeschehen. Das Gebirge zwingt die maritimen Luftmassen zum Aufsteigen, was häufig mit intensiven Steigungsregen auf der Luvseite der Anden einhergeht. Durch die Überströmung des Gebirges kommt es zur Ausbildung von speziellen Prozessgefügen in der atmosphärischen Strömung sowohl auf der Meso- als auch regionaler Skala. Der damit einhergehende Transport und Austausch von Energie und Masse beeinflusst maßgeblich die Entstehung und den Ausfall von Hydrometeoren. Trotz der starken Wechselwirkung zwischen Strömung, Topographie und Niederschlag wurde in Patagonien darüber bisher nur wenig geforscht. Das vorgeschlagene Forschungsvorhaben leistet daher einen Beitrag zum Verständnis der Wechselwirkung zwischen dynamischen Prozessen und der räumlichen und zeitlichen Variabilität von Niederschlag in dieser Region. Ziel des Projektes ist die Quantifizierung wichtiger Prozesse die neue Aufschlüsse über die relevanten Mechanismen liefern soll. Anhand von hochauflösenden numerischen Simulationen werden an Einzelfallstudien die dynamischen und thermodynamischen Eigenschaften der atmosphärischen Strömung im Detail analysiert. Begleitende Sensitivitätsstudien mit vereinfachten analytischen Modelle werden zudem Aussagen zu den Auswirkungen der atmosphärischen Variabilität auf die Niederschlagsverteilung liefern. Das aus der Studie gewonnene Prozessverständnis ist eine wichtige Grundlage für weiterführende Forschungsarbeiten im Bereich der Hydrologie, Glaziologie und Ökologie.
| Origin | Count |
|---|---|
| Bund | 568 |
| Land | 1 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 567 |
| unbekannt | 1 |
| License | Count |
|---|---|
| offen | 568 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 429 |
| Englisch | 210 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 1 |
| Keine | 407 |
| Webseite | 161 |
| Topic | Count |
|---|---|
| Boden | 408 |
| Lebewesen und Lebensräume | 492 |
| Luft | 447 |
| Mensch und Umwelt | 565 |
| Wasser | 469 |
| Weitere | 569 |