API src

Found 503 results.

Related terms

Schwerpunktprogramm (SPP) 2322: Systemökologie von Böden - das Mikrobiom und die Randbedingungen modulieren die Energieentladung, Teilprojekt: Sorptionsthermodynamik und Aggregation als Kontrollen der Substratnutzung und Mineralisierung 2: Reaktion auf komplexe Randbedingungen

Die Sorptionsstärke organischer Moleküle an Mineralien und die Stabilität von Aggregaten, die organische Substrate schützen, gehören zu den Randbedingungen, die „die Energie- und Stoffdynamik der Bodenbiota prägen“ (Gesamthypothese C des SPP 2322). Obwohl die Stabilisierung organischer Substanz gegen mikrobielle Nutzung und Mineralisierung im Boden mit Sorption in Verbindung gebracht wurde, ist ihr Zusammenhang mit der Thermodynamik von Sorptionsprozessen weiterhin Gegenstand laufender Forschung. In der ersten Förderphase fanden wir heraus, dass die Sorptionsenergie von Carbonsäuren an Eisenoxidoberflächen wahrscheinlich ein dominierender Faktor für die mikrobielle Verarbeitung und damit die Bindung von Kohlenstoff ist. Bei Zuckern und Aminosäuren überlagerten biochemische Kreisläufe und andere Randbedingungen wie Nährstoffverfügbarkeit, Feuchtigkeitsgehalt oder pH-Wert die Effekte der Sorption und beeinflussten das Verhältnis mineralisierter/assimilierter Substrate (Kohlenstoffnutzungseffizienz). Um die Reaktion auf komplexe Randbedingungen zu analysieren, die die Energie- und Stoffnutzung beeinflussen, da sie von der Sorptionsthermodynamik abhängen, werden wir die folgenden Hypothesen testen: (HI) Die Gibbs-Freienergie der Sorption kleiner organischer Säuren und die thermodynamische Hysterese steigen mit der Nichtkristallinität des Minerals und den Hydroxylgruppen an der Oberfläche der sorbierenden Oxidmineralien. (HII) Die Kohlenstoffnutzungseffizienz (CUE) wird hauptsächlich durch Assimilation bestimmt und durch eine komplexe Kombination von Randbedingungen (Desorbierbarkeit, Nährstoffverfügbarkeit, Feuchtigkeit und pH-Wert) und nicht durch die Sorptionsstärke allein gesteuert. (HIII) Die mikrobielle Nutzung sorbierter Substrate steigt mit zunehmender funktioneller Vielfalt und Komplexität der mikrobiellen Gemeinschaft des Bodens bei konstanter N-, P- und Energieverfügbarkeit. Und (HIV) die Stabilität mineralischer Aggregate steigt mit sinkendem osmotischem Potenzial und Mikroben produzieren extrazelluläre polymere Substanzen, wodurch die Zugänglichkeit von Substanzen zur mikrobiellen Verarbeitung in wasserstabilen Aggregaten sinkt. Wir werden diese Hypothesen in sechs Arbeitspaketen (AP) anhand gespiegelter mineral- und aggregatbasierter Ansätze in Bochum/Gießen und Freiburg testen. Der mineralbasierte Ansatz skaliert von Oberflächen-Molekül-Interaktionen bis hin zur mikrobiellen Nutzung von an Mineralen sorbierten Substraten mit zunehmender Komplexität der Mineraloberflächen (Anzahl der OH-Gruppen, Kristallinität). Der aggregatbasierte Ansatz skaliert vom Wasserpotenzial von Bodensäulen bis hin zu einzelnen wasserstabilen Aggregaten, die aus komplexen Wechselwirkungen zwischen Wasser, Wärme und Mikroorganismen entstehen. Beide verwenden einen gemeinsamen Satz von Mineralen und Substraten: Goethit, Gibbsit, Kaolinit, Glucose*, Zitronensäure und teilweise Phenol* (*C6-Verbindungen aus dem Kernexperiment). Das Bodenmaterial stammt aus Thyrow (Projektstandard) sowie einer Auswahl der Zeitschritte und aller Bodenmischungen aus den jeweiligen gemeinsamen Batterie- und Komplexitätsexperimenten des SPP. Durch die Kombination der erwarteten Ergebnisse aus komplexen Randbedingungen wird unser Projekt wesentliche Erkenntnisse für die Integration thermodynamischer Konzepte in die Funktionsweise von Bodenökosystemen liefern.

Untersuchungen ueber den Einfluss von Pflanzenschutzmitteln auf den Gehalt einzelner Zucker in Rebblaettern

Auswirkungen von Trockenheit und erhöhtem CO2 auf die Blattrollkrankheit der Weinrebe: Eine Untersuchung der Interaktionen zwischen Pflanze, Vektor und Virus

In Zeiten des Klimawandels wird die Pflanzengesundheit durch kombinierten Stress durch abiotischen, klimawandelbedingten Faktoren und biotischem Faktoren durch Schädlinge und Krankheitserreger beeinträchtigt. Dieses Projekt zielt darauf ab, die Auswirkungen abiotischer, klimawandelbedingte Stressfaktoren, wie z. B. erhöhtem atmosphärischen CO2-Gehalt (eCO2) und Trockenstress, auf die Interaktion zwischen Weinreben, Blattrollviren (GLRaV), und virusübertragenden Schmierläusen zu untersuchen. GLRaV, insbesondere GLRaV-3, verändert die CO2-Assimilation, die Wassernutzungseffizienz sowie die primären und sekundären Stoffwechselprodukte der Pflanze, was letzendlich zu Ertragsminderungen, verzögerter Fruchtreife und schlechter Traubenqualität führt. Das Virus wird durch infiziertes Vermehrungsmaterial und phloemsaugende Insekten, wie z. B. Schmierläuse, verbreitet. Es ist bekannt, dass eCO2- und Wasserstress einen erheblichen Einfluss auf die Pflanzenphysiologie und die Schädlingsbekämpfung haben kann. Außerdem weiß man, dass Pflanzenviren biotischen Stress für die Pflanzen verursachen und das Verhalten der Virusvektoren verändern können. Gleichzeitig werden Viren von denselben klimawandelbedingten abiotischen Stressfaktoren beeinflusst, wie die anderen Mitglieder des Ökosystems. Es gibt nur sehr wenige Studien über die Auswirkungen des Klimawandels auf Virusinfektionen auf Weinreben und keine einzige über die Auswirkungen auf Schmierläuse als Virusvektoren. Schlussfolgerungen aus anderen Pathosystemen zu ziehen, gestaltet sich schwierig, da die Auswirkungen von abiotischem, klimawandelbedingtem Stress oft artspezifisch sind. Bisher hat sich die Forschung vor allem mit den Wechselwirkungen einzelner Klimawandelparameter mit Pflanzen, Insekten oder Krankheitserregern befasst. Um die Wechselwirkungen zwischen mehreren Stressoren und die komplexen Beziehungen zwischen Pflanzen, Krankheitserregern und Vektoren zu verstehen, sind breitere Forschungsansätze nötig. Nur so können wirksame Anpassungsstrategien entwickelt werden um Pflanzen in der Zukunft gesund und produktiv zu halten. Im Rahmen des Projekts werden eine Reihe von Experimenten durchgeführt, bei denen Weinreben zwei Klimawandelparametern (Wasserstress + CO2) in Kombination mit biotischem Stress durch eine GLRaV-3-Infektion ausgesetzt werden. Untersucht werden die Mechanismen (Genexpression) und die Auswirkungen auf die Pflanzen (Aminosäuren, Phenole, C/N, Zucker, Chlorophyll) und den Insektenvektor (Fressverhalten, Fitness), zusätzlich zu klassischen Übertragungsexperimenten mit GLRaV. Die Forderung nach multifaktoriellen Stress-Experimenten wird seit Jahrzehnten erhoben. Diese Experimente sind ehrgeizig und komplex, aber sie sind der notwendige nächste Schritt, um Erkenntnisse über die zukünftige Entwicklung der Blattrollkrankheit zu gewinnen.

Biotechnologische Fumarat-Wertschöpfungskette - Von CO2 und Zucker bis hin zu biologisch abbaubaren Chemikalien, Teilprojekt A

Pflanzenzüchtungsforschung für die Bioökonomie 2022 - CornWall3: Identifizierung und Charakterisierung neuer Maismutanten mit verbesserten Biomasse Eigenschaften als erneuerbare Ressource für Grundstoffe der chemischen Industrie, Teilvorhaben B

Biotechnologische Fumarat-Wertschöpfungskette - Von CO2 und Zucker bis hin zu biologisch abbaubaren Chemikalien, Teilprojekt B

Biotechnologische Fumarat-Wertschöpfungskette - Von CO2 und Zucker bis hin zu biologisch abbaubaren Chemikalien

Biotechnologische Fumarat-Wertschöpfungskette - Von CO2 und Zucker bis hin zu biologisch abbaubaren Chemikalien, Teilprojekt D

Maßgeschneiderte Inhaltsstoffe 2.2: ForceYield2.2 Zukunftsweisende mikrobielle Plattform zur Hochertragsproduktion von Biochemikalien aus landwirtschaftlichen Nebenströmen

Pflanzenzüchtungsforschung für die Bioökonomie 2022 - CornWall3: Identifizierung und Charakterisierung neuer Maismutanten mit verbesserten Biomasse Eigenschaften als erneuerbare Ressource für Grundstoffe der chemischen Industrie, Teilvorhaben A

1 2 3 4 549 50 51