API src

Found 172 results.

Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden

Das Projekt "Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Glufosinat (oder Phosphinotricin) ist ein vergleichsweise modernes Herbizid, das seit etwa 25 Jahren in Gebrauch ist. Bei der Verbindung handelt es sich um eine Aminosäure; üblicherweise bezeichnet man das DL-Racemat als Glufosinat, das L-Enantiomer als Phosphinothricin. Die Verbindung ist Teilstruktur eines von den Pilzen Streptomyces viridochromogenes und Streptomyces hygroscopicus produzierten natürlichen Antibiotikums (Tripeptid: L-Alanin-L-Alanin-L-Phosphinothricin). Neben seiner antibakteriellen Wirkung zeigt Glufosinat eine nicht-selektive herbizide Wirkung. Der antibakterielle und herbizide Effekt geht nur vom L-Enantiomer aus; das D-Enantiomer ist inaktiv. Sowohl Glufosinat (Racemat) als auch das Tripeptid (Bialaphos oder Bilanaphos; mit L-Enantiomer) werden als Herbizide vermarktet. Die herbizide Wirkung von Phosphinothricin beruht auf einer Inhibition der Glutaminsynthetase. Glufosinat weist günstige ökotoxikologische Eigenschaften auf, z.B. bezüglich Versickerung, Abbau sowie Toxizität gegenüber Tier und Mensch. Auf Grund dieser Eigenschaften ist Glufosinat ein geeigneter Kandidat zur Herstellung gentechnisch modifizierter Herbizid-resistenter Pflanzen, um Glufosinat auch selektiv - im Nachauflauf - einsetzen zu können. Dazu wurden verschiedene Spezies, wie z.B. die Zuckerrübe, mit dem bar-Gen aus Streptomyces hygroscopicus transformiert. Das bar-Gen codiert für eine Phosphinothricin-N-acetyltransferase, die Phosphinothricin zum nicht herbizid-wirksamen, stabilen N-Acetylderivat umsetzt. Bei entsprechend hoher Expression des bar-Gens resultiert eine Glufosinat-resistente Pflanze. Ein Ziel unseres Forschungsvorhabens war es, den Metabolismus von Glufosinat und der einzelnen Enantiomere (L- und D-Phyosphinothricin) in transgenen und nicht transgenen Pflanzenzellkulturen zu untersuchen. Die transgenen Kulturen, die von der Zuckerrübe (Beta vulgaris) stammten, waren mit dem bar-Gen transformiert, exprimierten demnach die Phosphinothricin-N-acetyltransferase. Sie wurden aus entsprechenden Sprosskulturen initiiert. Daneben wurden nicht-transgene Kulturen von Zuckerrübe, Karotte (Daucus carota), Fingerhut (Digitalis purpurea) und Stechapfel (Datura stramonium) untersucht. In einer zweiten Versuchsserie wurden abgetrennte Sprosse und Blätter von 20 Wildpflanzen auf den Metabolismus von Glufosinat untersucht. Es sollte überprüft werden, ob qualitative und quantitative Unterschiede im Umsatz des Herbizids im Pflanzenreich vorkommen und möglicherweise eine natürliche (teilweise) Resistenz gegenüber Glufosinat existiert. Schließlich wurde das Schicksal des Herbizids im Boden (Abbau, Versickerung) nach Aufbringung des Wirksstoffs in einer handelsüblichen Formulierung auf ein bewachsenes Versuchsfeld im Freiland untersucht.

The European aeroemissions network (AERONET)

Das Projekt "The European aeroemissions network (AERONET)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik durchgeführt. One of the major problems that civil aeronautics will have to face over the next twenty or thirty years is to accommodate the predicted growth in demand of air transport without creating unacceptable adverse environmental effects. It is to be expected that new scientific results, increasing public concerns over the environment and future restrictive regulations with respect to aircraft emissions will force airline companies to take ecological considerations much more into account than it does at present. Consequently, for European aircraft manufacturers it is of high importance to react early and to guide their research and development resources into the most important and efficient direction. The aim of the AERONET project is to support coordination ' a postiori' of existing European and national projects or programmes dealing with the contribution of air traffic emissions to anthropogenic climate and atmospheric changes. For this purpose AERONET seeks to : - bring together experts from engine technology, atmospheric research and operations as well as programme responsible to exchange knowledge and opinions and to discuss necessary future actions on the basis of jointly defined goals and time scales, - produce competitive advantage for Europe through enhanced information echoing in the field of atmospheric effects of air traffic emissions, - strengthen a common European position in global technical and political discussions - support the Commission in identifying topics for the 5th Framework Programme, - identify gaps and help prepare a coordinated submission of proposals. European Dimension and Partnership: Europe is, beside the US, one of the two biggest aircraft manufacturers. One supposition for the economic success of European aircraft industry is not only to fulfill the existing regulations but, due to the long development times of 5-10 years and the long lifetimes of aircraft of more than 20 years, also to take the trend of future regulations development into account at a very early stage. This needs continuous and fast information exchange and discussions between atmospheric scientists, aircraft engineers and regulatory organisations. To be successful with an effort of this dimension, optimal coordination of national and European programmes in all three fields is required. Thus the network brings together representatives of all programmes and institutions concerned, helps to integrate activities through better information exchange, tries to identify the most urgent themes for R&D activities and intends to give recommendations for the Fifth Framework Programme. Potential Applications: Understanding the atmospheric impacts, the technical consequences and development perspectives, and the operational impacts as a whole is absolutely necessary to strengthen the European position in global regulatory committees on the on side and to gain competitive advantages for the European aircraft and airline industries on the other side. usw

B 2.3: Transport of agrochemicals in a watershed in Northern Thailand - Phase 3

Das Projekt "B 2.3: Transport of agrochemicals in a watershed in Northern Thailand - Phase 3" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. Land use changes of the last decades in the mountainous regions of Northern Thailand have been accompanied by an increased input of agrochemicals, which might be transferred to rivers by surface and/or subsurface flow. Where the river water is used for household consumption, irrigation and other purposes, agrochemical losses pose a serious risk to the environment and food safety. In the first and the second phase, subproject B2 collected data on and gained knowledge of the vertical and lateral transport processes that govern the environmental fate of selected agrochemicals at the plot and the hillslope scale (Ciglasch et al., 2005; Kahl et al., 2006). In the third phase, B2.3 will turn from the hillslope to the watershed scale. For simulation of water flow and pesticide transport the SWAT model (Neitsch et al., 2002b) will be adapted and used. The study area will be the Mae Sa watershed (138 km2), which includes the Mae Sa Noi subcatchment where B2 carried out detailed investigations during the last two phases. The specific focus of the subproject will be the parameterization and calibration of the SWAT model and its integration into the model network of the SFB. The SFB database has been established and can be used for model parameterization. In addition, high-quality geo-data are available from the Geoinformatic and Space Technology Development Agency (GISTDA) in Chiang Mai. For model calibration, discharge measurements are available for the Mae Sa Noi subcatchment (12 km2) and for the neighboring Mae Nai subcatchment (18 km2). To collect data on the Mae Sa watershed discharge, at the very beginning of the third phase gauging stations will be established in a midstream position and at the outlet of the watershed. Pesticide fluxes will be measured at each gauging station as well as in the Mae Sa Noi subcatchment, where B2.2 has operated two flumes equipped with automatic discharge-proportional water samplers since 2004. Rainfall distribution and intensity will be monitored with a net of automatic rain gauges. Hydrograph separation will be performed using soil and river temperatures (Kobayashi et al., 1999). Within the watershed temperature loggers will be installed at different soil depths to measure the temperature of the different discharge components. Already at the beginning of the second year of the third phase we will start to couple the SWAT model with land use and farm household models of the SFB and to use the model to assess the effect of land use and land management changes on the loss of pesticides to surface waters.

B 1.2: Efficient water use in limestone areas - Phase 2

Das Projekt "B 1.2: Efficient water use in limestone areas - Phase 2" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The elevated areas of Northern Thailand highlands are inhabited by ethnic minorities. On the other hand, the Thai majority prefers the valley bottoms. Population growth of all groups, reforestation and commercialisation of agriculture lead to an increasing pressure on land and water resources. Therefore, intensified land and water use systems are desired which are resource conserving at the same time. Here, special problem areas are the karstic limestone catchments due to the limited of surface waters.Own pre-investigations together with subproject A1 have shown, that land use systems there are subsistence oriented and local farmers do not use irrigation. But they would like to develop such technology, especially in order to increase staple crop production (highland rice, maize). But lack of irrigation possibilities is also responsible for the lack of diversification of land use systems with respect to orchards. One possibility to increase staple crop yields is to prolong the vegetation period by use of water harvesting technologies. Aim of this project is to develop such low cost water harvesting technologies (together with subproject B3.1) based on a participatory approach and to model the effect of these on the water balance at the catchments scale. This will be done on the basis of the previous variability studies and should lead to model tools, which allow to evaluate ex ante SFB innovation effects on the water balance. The project area is the Bor Krai catchments. Here, weirs will be installed to quantify surface water availability. An investigation plot will be situated near the village of Bor Krai which serves for water balance measurements (TDR/densitometry) and at the same time as demonstration plot for the local community. Here water harvesting by means of filling the soils field capacity at the end of the rainy season by gravity irrigation in order to prolong the vegetation period will be researched. Through cropping of participatory evaluated varieties the crop yield should be increased. The water consumption of traditionally managed and dominant crops (including orchards) will be measured at three further sites in the catchment (TDR, tensiometer). The water balance of the soil cover in the karst catchment will be based on the coupling of a SOTER map with a water transport model. The data base will be completed by soil type mapping, spatially randomised collection of soil physical properties (texture, bulk density, infiltration, water retention curve) and determination of the ku-function at two representative sites. As project results the available water amount for irrigation purposes will be quantified. The effective use of this water reserve will lead to increased productivity of the dominant crops and limitations to orchard productivity will be reduced. (abridged text)

AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface

Das Projekt "AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.

D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam

Das Projekt "D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tierproduktion in den Tropen und Subtropen (480), Fachgebiet Aquakultur-Systeme und Tierernährung in den Tropen und Subtropen (490i) durchgeführt. Background: Aquaculture significantly contributes to protein supply and cash income of Black Thai farmers in Yen Chau, Son La province, Northern Vietnam. Fish is produced for cash income (2/3rd) and subsistence (1/3rd) while self recruiting species (small fish, crustaceans and molluscs) provide additional protein for home consumption. The current aquaculture system is a polyculture of the macroherbivorous grass carp as main species together with 3-5 other non-herbivorous fish species like Common Carp, Silver Carp, Bighead Carp, Mud Carp, Silver Barb and Nile Tilapia. With a rearing period of 21 months, the productivity of the aquaculture system amounts to 1.54 +- 0.33 t ha-1 a-1 and can be characterized as low. Nearly each household has at least one pond, which serves multiple purposes and is operated as a flow-through-system. The steady water flow is advantageous for the culture of grass carp, but causes a continuous loss of nutrients and high turbidity and thereby limits the development of phytoplankton and zooplankton which are natural food for non-herbivorous species. The farmers are using mainly green leaves (banana, bamboo, cassava, maize and grass) and crop residues (rice bran, rice husk, cassava root peel, distillery residue) as feed input, which is available to Grass Carp while non-herbivorous fish species are not fed specifically. Manure is used as fertilizer. The uneaten parts of fed plants are sometimes accumulating in the pond over several years, resulting in heavy loads of organic matter causing oxygen depletion. Anaerobic sediment and water layers limit the development of zoobenthos and may provide a habitat for anaerobe disease agents. Since 2003 an unknown disease condition has been threatening Grass Carp production and is having a major economic impact on the earnings from fish farming in Yen Chau region. Other fish in the same ponds are not affected. Especially in March-April and in September-October the disease is causing high morbidity and mortalities of Grass Carp in affected ponds and is thereby decreasing the dietary protein supply and income generation of Black Thai farmers. Little is known about the definition or aetiology of the disease condition.

Fuel-Switch Project in the North-West of Russia

Das Projekt "Fuel-Switch Project in the North-West of Russia" wird vom Umweltbundesamt gefördert und von GFA Envest GmbH durchgeführt. The objective of the JI project was to replace the outdated and inefficient municipal heating installations running on coal by modern wood-fired boilers. Replacement has been done for the 43 MW capacity required for the heat supply to a town. As the wood fuel comes from sustainably managed forests GHG emissions from coal firing are avoided. Additionally, methane emissions from landfills are prevented. GFA ENVEST developed the Joint Implementation Project according to the UNFCCC modalities, covering the renewable energy component and the methane emission reduction component.The Onega JI project was the second Russian JI project that passed the JI validation process. Services provided: Identification of Project Location. Biomass Supply Assessment: Location analysis/forest resource analysis; Standing forest stock; Review of available waste wood stocks in the region; Economic and Financial Feasibility: Analysis of carbon and biomass benefits; Analysis of switching fuel systems in the identified location. Baseline Study Package for the Fuel-Switch Project: Environmental Assessment; Social Assessment; Review of the legislation to facilitate the switching of fuel source for heating purposes; Review current legislation and regulation of the energy, forestry, and environmental sectors as well as all regulations and laws affecting budgetary process and use by government of additional revenues; Intergrated stakeholder consultations. Baseline Study (BLS): Monitoring plan; Emission Reduction and Sequestration Study (ERSS); projections of the ERs that can reasonably be expected to be generated by the Project; Support for permissions, approvals and registration of the Joint Implementation project by relevant national and international authorities; Support to the project investor on monitoring and verification of emission reductions; accompanying Designated Operational Entity during the verification process; Marketing of Emission Reduction Units and Voluntary Emission Reductions on behalf of project investor; Assistance to the project investor during Emission Reduction Purchase Agreement negotiations.

Improvement of oil palm wood by bio resin application

Das Projekt "Improvement of oil palm wood by bio resin application" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Forstwissenschaften, Institut für Forstnutzung und Forsttechnik, Professur für Forstnutzung durchgeführt. Reinforcement of oil palm wood by using Bioresin to improve its physical, mechanical and machinery properties. Concerning the utilization of oil palm wood, which is available in large number throughout the year, especially when the mature plants has reached its economic life span (approx. 25 years). Normally, this mature plant should be replanting. According to the projection of oil palm plantation development in Indonesia, there are more than 16 million cubic meter of this bulky material starting 2010. This large amount of biomass, if no real effort, will become a serious problem. Unfortunately, the current replanting method (push-felled) sounds risky and in several companies follow by burning method, which is really not solve problem, but creating the other serious problem, such as air pollution. The oil palm wood characteristics as a monocotyledons species is naturally quite different compare to the common wood (dicotyledonous). Originally the oil palm tree has various densities along the trunk and its density decreased linearly with trunk height and towards the centre of the trunk. Green oil palm trunk is also very susceptible to fungal and insect attack due to the high sugar and starch content. Hence, the utilization of this material is not fully utilized yet and still poses a serious environmental problem. Yet, compared to the various intensive researches and the economically important of the oil palm, processing technology and diversification of palm oil based products mainly from CPO and PKO, the oil palm solid waste, particularly the oil palm wood, has received relatively little research attention. This might be due to lack or insufficient the scientific information and Know-How of this material and might be also due to the difficulties of using with the OPT. Although several investigations have already conducted in the field of OPT, but a sufficient knowledge shall be achieved in order to design and establish the new tailor-made wood products based on oil palm wood. Hence, this study was directed to focus the characteristics of OPT including anatomical, physical, mechanical and machinery properties, and in order to use the OPT for structural purposes, the wood properties of OPT were improved and reinforced with Bioresin through the development of wood modification techniques.

Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter

Das Projekt "Further treatment of digested blackwater for extraction of valuable components and conversion to dry matter" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Abwasserwirtschaft und Gewässerschutz B-2 durchgeführt. Phosphorus and nitrogen are valuable and should not be wasted or even worse recycled to the environment. An important resource in the sludge is nutrients which can be utilized through using sludge as fertilizer in the agriculture. Wastewater and excreta contain valuable nutrients that can be used in agriculture and aquaculture. Most of the nutrients, like phosphorous (P) and nitrogen (N), that a person consumes end up in the excreta. Nutrients are needed in developing countries as much as developed ones. Therefore, they should not be wasted. In nature there is no waste, all products of living things are used as raw materials by others (Esrey et al, 1998). Ecological sanitation systems (also called ecosan') are closed-loop systems, which treat human excreta as a resource. In this system, excreta are processed on site until they are free of pathogenic (disease-causing) organisms. Afterwards, sanitized excreta are recycled by using them for agricultural purposes. Key features of ecosan are therefore: - prevention of pollution and disease caused by human excreta; - treatment of human excreta as a resource rather than as a waste product; and - recovery and recycling of the nutrients. The problem of nutrient recovery from municipal sewage or excess sludge is not a new problem. In the literature, several papers have addressed the recovery of ammonia or phosphate from industrial and domestic wastewater, but not much with black water. So far many attempts have been made to control the process of self-deposition and recover nutrients as a fertilizer, which can be used directly for agricultural purposes as ecological sanitation advises. The aim of this research project is to find out further treatment methods of digested black water for extraction of valuable nutrients and convert them to dry matter and find solutions for dense urban areas and make usable compounds easier transportable.

DE-LIGHT Transport

Das Projekt "DE-LIGHT Transport" wird vom Umweltbundesamt gefördert und von Center of Maritime Technologies e.V. durchgeführt. DE-LIGHT Transport is a multi-national initiative supported by the European Commission's Framework 6 programme that is investigating the design and manufacturing of lightweight sandwich structures in the marine, rail and freight container industries. Sandwich materials, consisting of two thin facings separated by a low density core, can be used to produce structures that are both light and stiff. They also offer opportunities for parts reduction through design integration, improved surface finish and lower assembly and outfitting costs. DE-LIGHT Transport aims to further promote the use of sandwich materials by developing key technologies that will support the practical realisation of robust sandwich designs. Specifically, this will include: - A multi-material sandwich design tool. Previous work has often focussed on a particular type of sandwich construction (e.g. laser-welded steel or composite). This has tended to yield niche results with limited applicability. DE-LIGHT Transport will implement a more generic design approach that will allow the evaluation and optimisation of a wide range of material and structural mixes according to the requirements of a given application. - Strategies for joining, assembly and outfitting ? the bringing together and integration of separate sandwich panels and/or sub-components to produce finished structures. In particular, modular approaches for the off-line production of sandwich assemblies to exploit economies of scale will be developed. Testing and validation procedures ? to provide accurate and reliable methods of determining fitness for purpose. The above technologies will be demonstrated within the project through the design and manufacturing of six prototype structures. These will include deck and deckhouse structures for ships, a rail vehicle cab, and a freight container. Risk-based design principals will be applied throughout to ensure that the new designs comply with existing regulatory frameworks. It is anticipated that DE-LIGHT Transport will provide designers of vehicles and vessels with practical approaches to the implementation of sandwich solutions as an alternative to traditional stiffened-plate designs. In this way, the benefits of sandwich construction will be unlocked for a wider range of applications.

1 2 3 4 516 17 18