Mit dem Vorhaben BigGIS soll eine neue Generation von Geoinformationssystemen (GIS) entwickelt und erforscht werden, mit neuen Mechanismen, die in vielfältigen Szenarien Entscheidungen auf der Basis großer Mengen an heterogenen Daten besser und schneller unterstützen. Hierfür werden eine hochperformante, integrierte technische Infrastruktur, neuartige Indexstrukturen und Datenreduktionsverfahren sowie fortgeschrittene analytische Verfahren für verschiedene Einsatzszenarien entwickelt und erprobt. Es wird ein GIS entwickelt, welches die schnelle und zuverlässige Verarbeitung sehr großer, heterogener und zum Teil unstrukturierter und unzuverlässiger Daten ermöglicht. Die Neuheit liegt in der integrierten Betrachtung von Zeit und Raum bei der Datenablage, -indexierung und -analyse sowie einer weitgehend automatisierten Reduktion, Verarbeitung, und semantischen Integration der Daten, die auch vorausschauende Analysen erlaubt. In den drei Anwendungsfällen Umweltmonitoring, Katastrophenschutz und Smart City werden spezifische Problemstellungen adressiert und die Lösungen empirisch validiert und weiterentwickelt. Die EXASOL AG wird innerhalb von BigGIS Methoden zur Integration von GIS- Fähigkeiten und Anforderungen für die relationale Big Data Engine 'EXA Solution' erforschen und entwickeln. Besonderes Augenmerk gilt hierbei der hochperformanten Verarbeitung von GIS-Daten und Anfragen, wodurch GIS Anwendungen im Big Data Maßstab erst ermöglicht werden.
Der Dampfmotor ZEE ist in seinem Aufbau einem konventionellen Fahrzeugmotor sehr ähnlich, mit dem einzigen Unterschied, dass, wie der Name bereits verrät, als Arbeitsmedium Dampf verwendet wird. Der Dampfmotor funktioniert mit 'äußerer, kontinuierlicher' Verbrennung. Der Porenbrenner erzeugt hierbei die erforderliche Wärmeenergie, um energiereichen, heißen Dampf zu produzieren. Dieser Dampf wird in den Motor geleitet, wo er unter Kraftwirkung auf den Kolben isotherm expandiert und Arbeit verrichtet. Durch die isotherme Prozessführung wird eine wesentliche Erhöhung des Wirkungsgrades gegenüber einem Dampfmotor herkömmlicher Bauart erzielt. Am unteren Totpunkt des Kolbens strömt der abgekühlte Dampf aus dem Zylinder und wird in einem Kondensator erneut zu Wasser verflüssigt. Es handelt sich somit um ein Zweitaktprinzip. Je mehr Dampf eingelassen wird, desto größer ist die Leistung des Motors. Die variable Einlasssteuerung durch Ventile oder so genannte Dampfinjektoren ermöglicht die Regelung des Motors. Im Gegensatz zu konventionellen Dampfmaschinen wird der 'Restdampf', nachdem er seine Arbeit verrichtet hat, nicht ausgestoßen, sondern im Kondensator verflüssigt und steht dem geschlossenen Prozess erneut zur Verfügung. Kernstück der Energieerzeugung ist der Porenbrenner, eine völlig neue Brennertechnologie, mit der das Unterschreiten der härtesten Abgasgrenze ermöglicht wird. Der Porenbrenner ist ein thermischer Reaktor, der aufgrund der vollständigen Verbrennung und der kontrollierten Verbrennungstemperatur kaum noch messbare Abgase erzeugt. Das Kraftstoff-Luft-Gemisch wird in eine keramische Porenstruktur geleitet und verbrennt dort nahezu schadstofffrei. Dabei ist der Porenbrenner vielstofffähig: Benzin, Diesel, Erdgas oder Wasserstoff kommen als Kraftstoff in Betracht, ebenso wie gasförmige oder flüssige Biokraftstoffe. Bei einem Einsatz von Wasserstoff als Energieträger entfallen zusätzlich die Kohlendioxidemissionen, die mit jeder Verbrennung fossiler Kraftstoffe unabänderlich verbunden sind. Die Porenbrennertechnik erlaubt also tatsächlich eine emissionsfreie Energieerzeugung.
Erstmals soll versucht werden, eine moeglichst umfassende Bestandsaufnahme der Verkehrs- und Fahrleistungen in der DDR 1988 zu erheben. Mit zu bestimmenden bzw. zu recherchierenden Emissionsfaktoren werden die Energieverbraeuche und Schadstoffemissionen der verschiedenen Verkehrstraeger der DDR berechnet. Aus Abschaetzungen der kuenftigen technischen Entwicklung der Fahrzeuge sowie der Verkehrsentwicklung werden Szenarien fuer das Jahr 2000 entwickelt. Die Ergebnisse werden spezifisch und absolut entsprechenden Berechnungen fuer die Bundesrepublik Deutschland gegenuebergestellt.
Die Abgase aus Bootsmotoren, insbesondere von Zweitaktmotoren, enthalten eine Vielzahl auf Wasserorganismen toxisch wirkender Komponenten. Durch die staendig steigende Zahl von Motorbooten auf dem Bodensee veranlasst, erteilte 1984 die Internationale Gewaesserschutzkommission fuer den Bodensee den Auftrag, Emissionsnormen fuer Bootsmotoren zu entwickeln. Mit den motorentechnischen Untersuchungen wurde das Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren Stuttgart beauftragt. In den vorliegenden Projekten wurden die Abgasimmissionen bei der Verwendung von Benzin, Ethanol, Isooktan/Heptan und verschiedenen sogenannten biologisch leicht abbaubaren Motorenoelen untersucht. Zum Vergleich wurden einige Versuchslaeufe mit einem Katalysator durchgefuehrt. Professor Juettner hatte den Auftrag, die Zusammensetzung der Abgase in Abhaengigkeit von Motorentyp, Betriebsweise und Treibstoffart zu analysieren. Von der LfU wurden parallel dazu oekotoxikologische Untersuchungen an Leuchtbakterien, Daphnien und Fischembryonen durchgefuehrt. Die Abgasimmissionen von Zweitaktbootsmotoren sind um ein vielfaches groesser als diejenigen von Viertaktmotoren, dies wird auch durch die oekotoxikologischen Untersuchungen bestaetigt. Bei Verwendung von Ethanol sinken zwar die Kohlenwasserstoffimmissionen, dagegen steigen die Aldehydimmissionen stark an. Die Verwendung sogenannter biologisch abbaubarer Schmieroele erbrachte keine Verbesserungen. Auch beim Einsatz eines Katalysators konnten die Zweitaktmotoren bestenfalls die Werte von Viertaktern ohne Katalysator erreichen. Die Ergebnisse dieser Untersuchungen bilden die Grundlagen fuer die Einfuehrung von Abgasvorschriften fuer Schiffsmotoren auf dem Bodensee im Jahre 1992.
Bundesweit arbeiten ca. 50.000 Beschaeftigte mit 2-Takt-Motorsaegen in der Forstwirtschaft. Ueber 90 Prozent der Waldarbeiter gaben in Befragungen gesundheitliche Beschwerden durch Motorsaegenabgase an. Das Ausmass der Schadstoffbelastung variiert ausserordentlich stark in Abhaengigkeit von den Arbeits- und Umgebungsbedingungen. Ziel der Studie war die Identifikation und Analyse von Parametern, die zu einer Steigerung der Abgasinhalation fuehren, um gezielte Ansaetze zur Verminderung dieser Belastungsspitzen zu ermoeglichen. Als Indikator diente der Hauptschadstoff Kohlenmonoxid (CO), das nach inhalativer Aufnahme Carboxyhaemoglobin (CO-Hb) bildet. Durch Immissionsmessungen fuer CO und eine engmaschige Verlaufskontrolle des COHb ( Tagesprofil ) wurde die Belastung durch die Abgase waehrend der Schicht erfasst. Die Ausloeseschwelle des maximalen Arbeitsplatztoleranzwertes (MAK-Wertes) fuer CO und der Kurzzeitwert (KZW) wurden haeufig ueberschritten. Der biologische Arbeitsplatztoleranzwert (BAT-Wert) von 5 Prozent CO-Hb wurde bei Arbeiten im Starkholz von Nichtrauchern ueberschritten. Das CO-Hb stieg in den ersten 2-3 h der Arbeitszeit auf den Maximalwert an und sank dann infolge nachlassender Arbeitsleistungen langsam wieder ab, so dass am Schichtende 20-30 Prozent niedrigere Werte gegenueber der Maximalbelastung gemessen wurden. Mit Hilfe von Videoaufzeichnungen konnte der entscheidende Einfluss der wechselnden Umgebungsbedingungen sowie der individuellen Handhabung der Motorsaege auf die Schadstoffbelastung analysiert werden. Folgende die Schadstoffinhalation erhoehende Situationen wurden identifiziert: 1 . Faellschnitt, 2. Entasten in dichten Baumkronen von Nadelhoelzern, 3. Arbeiten bei niedrigen Windgeschwindigkeiten, 4. Arbeiten in dichten Baumbestaenden. Bei diesen Taetigkeiten konnten auch die hoechsten CO-Expositionen mit Spitzenbelastungen von bis zu 400 ppm gemessen werden, vereinzelt wurden 600 ppm ueberschritten.
Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien
Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien
Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien
Zweitakter als Antrieb in forstwirtschaftlichen Aggregaten (hier Nutzungsgrad 100%, da Eingabe der Treibstoffverbräuche!). Die Emissionen für CO, NOx, Partikel (hier anderer Flugstaub), HC&Aldehyde (hier NMVOC) wurden angepasst. Es verbleiben geringe Abweichungen bei CO2 und höhere bei SO2. Diese wurden nicht verändert, da stöchiometrisch berechnet. Auslastung: 2500h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Öl gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 10a Leistung: 1MW Nutzungsgrad: 100% Produkt: Hilfsenergien