API src

Found 5 results.

Analyse der Umweltbilanz von Kraftfahrzeugen mit alternativen Antrieben oder Kraftstoffen auf dem Weg zu einem treibhausgasneutralen Verkehr

Um die Klimaschutzziele im Verkehrssektor zu erreichen sind neben der Verkehrsvermeidung und Verlagerung auch der Einsatz von alternativen Antrieben und alternativen Kraftstoffen potentielle Optionen. In der Studie werden die verschiedenen Technologieoptionen für Personenkraftwagen, sowie leichte und schwere Nutzfahrzeuge analysiert und gegenübergestellt. In die Bilanzierung wird der komplette Lebenszyklus der Fahrzeuge eingeschlossen und neben Treibhausgasemissionen weitere Umweltwirkungskategorien (u. a. ⁠Versauerung⁠, ⁠Eutrophierung⁠, Energieaufwand) ausgewertet. Der Markthochlauf alternativer Kraftstoffe bzw. Ausbau erneuerbarer Energien wird anhand zwei verschiedener Hochlaufszenarien modelliert und die Ergebnisse für drei unterschiedliche Bezugsjahre dargestellt.

Kraftstoffe und Antriebe

Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das ⁠ Verkehrsaufkommen ⁠ in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas (⁠ LNG ⁠ – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus ⁠ Biomasse ⁠ hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/⁠ PtG ⁠ oder ⁠ PtL ⁠)-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von ⁠ PtG ⁠-Wasserstoff in Brennstoffzellen-Pkw bzw. von ⁠PtG⁠-Methan und PtL⁠ in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe ⁠ Fahrleistung ⁠ muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt (⁠ UBA ⁠) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. ⁠ BImSchV ⁠): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .

Untersuchungen zu maximalen Minderungspotentialen von Schwefel- und Stickstoffoxiden sowie Black Carbon Kontrollmechanismen durch operative und technische Maßnahmen und praktische Messungen des Einflusses der Kraftstoffqualität auf Black Carbon Emissionen in der Seeschifffahrt.

Das Projekt "Untersuchungen zu maximalen Minderungspotentialen von Schwefel- und Stickstoffoxiden sowie Black Carbon Kontrollmechanismen durch operative und technische Maßnahmen und praktische Messungen des Einflusses der Kraftstoffqualität auf Black Carbon Emissionen in der Seeschifffahrt." wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: DNV GL SE.Die Seeschiffahrt ist eine starke Emissionsquelle für Luftschadstoffe (Schwefeloxide/SOx u. Stickstoffoxide/NOx) und klimarelevante Substanzen (Kohlenstoffdioxid/CO2 u. Black Carbon/BC). Während für SOx und NOx bereits Emissionsgrenzwerte von der IMO implementiert wurden, ist eine Beschränkung von BC aus der Seeschifffahrt von gleicher Stelle in Vorbereitung. Luftschadstoff- und BC-Emissionen werden durch technische und operative Parameter beeinflusst, dazu zählen u. a. alternative Kraftstoffe, alternative Antriebe/Motorenkonzepte, Abgasnachbehandlungssysteme und Motorbetriebszustände. Dabei wurde in Studien festgestellt, dass einzelne Maßnahmen zur SOx-Minderung (schwefelarme Kraftstoffe) auch Einfluss auf BC-Emissionen haben. AP1: Die SOx- u. NOx-Reduktionspotentiale verschiedener Abgasnachbehandlungskonzepte in Abhängigkeit der eingesetzten Kraftstoffe, der Motorenarten und der Betriebszustände sollen systematisch herausgearbeitet werden. Im Rahmen des Vorhabens soll untersucht werden, ob die genannten Optionen absehbar wirtschaftlich realisierbar sind und welche Systeme aus umweltpolitischer Sicht zukunftsfähig sind. AP2:Es soll der geeignete Messstandort für BC ermittelt werden (Motorprüfstand oder direkte Messung im Abgasstrom). Anhand dessen soll nachfolgend die Auswahl einer geeigneten Messmethode eingegrenzt werden. In einer Literaturstudie soll unter Einbeziehung von Experten aus der Industrie Kontrollmechanismen basierend auf den o. g. (fett) Parametern betrachtet werden. Die Ergebnisse sind in einem Strategiepapier zu 'BC-Emissionen der internationalen Schifffahrt' als möglicher Weg zu BC-Emissionsgrenzwerten zusammenzufassen. AP3:Messtechnisch wird der Einfluss von Schiffskraftstoffen, insbesondere derer mit 0,5% Schwefelgehalt (gemischt u. entschwefelt), auf die BC-Emissionen unter verschiedenen Motorlasten untersucht. Die Ergebnisse sollen in einer IMO Submission sowie auf einem ICCT Workshop publiziert werden.

Klimaschutzbeitrag des Verkehrs bis 2050

Ein wesentliches Ziel dieses Vorhabens war die Ableitung von ambitioniert-realistischen Minderungszielen der Treibhausgasemissionen für den Verkehrsbereich, unter Beachtung des sektorübergreifenden Minderungszieles von 80-95 % in 2050 gegenüber 1990. Zur Bewertung der Umsetzbarkeit der Ziele aus der Perspektive des Verkehrs wurde dabei ein Klimaschutzszenario für den Verkehr entwickelt. Ein Schwerpunkt war die Betrachtung des Güterverkehrs. Dabei wurden die Auswirkungen von Vermeidungs-, Verminderungs- und Verbesserungsmaßnahmen (Verkehrswende) und dem Einsatz erneuerbarer Energieträger (Energiewende) auf die Treibhausgasemissionen und den Bedarf an erneuerbaren Energien diskutiert. Die Energiewende im Güterverkehr wurde mit den Technikoptionen "aus erneuerbaren Strom hergestellten Power-to-Liquid" und "Oberleitungshybrid-Lkw" betrachtet.Quelle: https://www.umweltbundesamt.de

Klimavorteil für E-Autos bestätigt

Für mehr Klimaschutz im Verkehr müssen Marktanteile elektrischer Pkw schnell steigen Fahrzeuge haben nicht nur im Betrieb, sondern auch bei der Herstellung und Entsorgung eine Wirkung auf die Umwelt und das Klima. Laut einer aktuellen Studie im Auftrag des Umweltbundesamtes (UBA) sind im Jahr 2020 zugelassene Elektroautos dabei um etwa 40 Prozent klimafreundlicher in ihrer Wirkung als Pkw mit Benzinmotor. Bei einem raschen Ausbau der erneuerbaren Stromerzeugung steigt dieser Klimavorteil für im Jahr 2030 zugelassene Pkw auf rund 55 Prozent. Dazu sagt UBA-Präsident Dirk Messner: „Elektrische Fahrzeuge sind ein wesentlicher Baustein, um die Klimaziele in Deutschland zu erreichen. Um deren Anschaffung attraktiver zu machen, sollten künftig Pkw mit höheren CO2-Emissionen bei der Neuzulassung mit einem Zuschlag belegt werden. Nur so werden wir das Ziel der Bundesregierung von 15 Millionen E Autos im Jahr 2030 überhaupt noch erreichen können.“ In der Studie wurden die Umwelt- und Klimawirkungen von Personenkraftwagen (Pkw) und Nutzfahrzeugen mit konventionellen und alternativen Antrieben detailliert, anhand des gesamten Fahrzeuglebenszyklus, untersucht und verglichen. Der Klimavorteil für Elektro-Pkw (E-Pkw) – so die Ergebnisse der Studie – steigt von 40 Prozent bei Zulassung in 2020 auf bis zu 55 Prozent für in 2030 zugelassene Pkw im Falle eines zügigen Ausbaus erneuerbarer Energien an. Der Klimavorteil bleibt auch dann bestehen, wenn sich der Anteil von aus erneuerbarem Strom hergestellten E-Fuels für Pkw mit Verbrennungsmotor in den kommenden Jahren deutlich erhöhen wird. Nicht nur ⁠ Klimawirkung ⁠ untersucht Bei einigen Umweltwirkungen ergeben sich für E‑Pkw mit Zulassung im Jahr 2020 teilweise noch Nachteile. Vor allem die Auswirkungen auf Wasser (aquatische ⁠ Eutrophierung ⁠) und Böden (⁠ Versauerung ⁠) müssen dem Klimavorteil bei der Nutzung gegenübergestellt werden. Diese Nachteile der elektrischen Pkw sind größtenteils auf die noch fossile Strom­bereitstellung zurückzuführen. Im Zuge der bereits im Gange befindlichen Umstellung auf ein erneuerbares Stromsystem nehmen diese Nachteile immer weiter ab. Im Jahr 2050 liegt der E-Pkw bei allen untersuchten Umweltwirkungen vor Pkw mit Verbrennungsmotoren. Dann verursacht der E‑Pkw gegenüber dem Benzin-Pkw beispielsweise auch eine um rund 27 Prozent geringere aquatische Eutrophierung. Daneben steigen durch die Elektromobilität die Bedarfe und der Abbau von teilweise kritischen Rohstoffen, beispielsweise Cobalt, Nickel und Lithium, an. Jedoch kann die Bereitstellung von Primärrohstoffen durch eine geeignete Kreislaufführung (z. B. Recycling) perspektivisch reduziert werden. Für einen schnellen Hochlauf der Elektromobilität sind zielgerichtete haushaltsneutrale Maßnahmen wie eine Reform der KFZ-Steuer, die im ersten Jahr der Zulassung eines Neuwagens einen Zuschlag für Pkw mit hohen CO 2 -Emissionen erhebt vorteilhaft. Dies könnte deutlich effektiver als die entfallene Kaufprämie wirken. Um die umwelt- und klimaschädlichen Wirkungen zu reduzieren und den Verkehr noch schneller klimaverträglich zu gestalten, bleibt aber auch die Verkehrswende mit Vermeidung, Verlagerung und Verbesserung wichtig. Jede vermiedene Fahrt spart Strom oder Kraftstoff und schont Mensch und Umwelt. Lkw ebenfalls betrachtet In der Studie wurde auch die Umweltbilanz von Lkw untersucht. Lkw, die verflüssigtes Erdgas (⁠ LNG ⁠) nutzen, haben weder bei Zulassung in 2020 noch in 2030 Vorteile gegenüber Diesel-Lkw. Bei elektrischen Sattelzügen stellen sich für 2030 zugelassene Fahrzeuge deutliche Klimavorteile ein. Aufgrund der hohen Fahrleistungen der Lkw ist die Nutzungsphase noch relevanter als bei Pkw – damit sind die Emissionen bei der Fahrzeug- und Batterieherstellung nicht so dominant. Batterie-elektrische Sattelzüge oder solche mit Oberleitung und Akku sind bei Zulassung in 2030 im Falle eines zügigen Ausbaus erneuerbarer Energien schon zu 73 bis 78 Prozent im Klimavorteil gegenüber Fahrzeugen mit Verbrennungsmotor; sonst sind es 55 bis 60 Prozent. Auch in 2050 verursachen diese Fahrzeuge weniger Treibhausgasemissionen als Verbrenner. Allgemein gilt: Um die ⁠ Klima ⁠- und Umweltvorteile von elektrischen Fahrzeugen nutzen zu können, ist ein entsprechender Auf- und Ausbau von Ladeinfrastruktur dringend notwendig. Gerade bei Lkw ist hier ein rasches Handeln erforderlich, denn durch die reduzierte Lkw‑Maut für elektrische Lkw gibt es derzeit ein großes Nachfragepotential. Hintergrund Die Studie „Analyse der Umweltbilanz von Kraftfahrzeugen mit alternativen Antrieben oder Kraftstoffen auf dem Weg zu einem treibhausgasneutralen Verkehr“ wurde vom Umweltbundesamt (⁠ UBA ⁠) beauftragt und vom ifeu – Institut für Energie- und Umweltforschung Heidelberg durchgeführt. Neben den Treibhausgasen wurden auch Energie-, Ressourcen- und Wasserverbrauch sowie die Schadstoffemissionen in Luft, Wasser und Boden analysiert. Zusätzlich zu den direkten Umweltwirkung durch die Nutzung der Fahrzeuge wurden auch die Umwelt­wirkungen bei der Herstellung von Fahrzeugen, Kraftstoffen und Stromerzeu­gungs­­anlagen als sogenanntes „Hintergrundsystem“ detailliert bestimmt. Die Analysen wurden jeweils für Fahrzeuge, die 2020, 2030 und 2050 zugelassen wurden, durchgeführt. Weitere Informationen Aquatische Eutrophierung Die aquatische Eutrophierung ist ein Maß für den Nährstoffeintrag (u.a. Stickstoff und Phosphor) in Flüsse, Seen und Meere und führt dort zu einer Erhöhung bzw. Beschleunigung des Wachstums von Algen. Hierdurch können großflächige Algenblüten auftreten, auch mit Arten die Giftstoffe produzieren, welche zur Verschlechterung der Wasserqualität führen. Als Folge des bakteriellen Abbaus abgestorbener Algen kann der Sauerstoffgehalt in Gewässern sinken und so zu einem Absterben von Wasserlebewesen (u. a. Fische) führen. Versauerung Die Versauerung führt zu einer Abnahme des pH-Wertes in Böden und Gewässern und ist dafür verantwortlich, dass für Pflanzen wichtige Nährstoffe bzw. Mineralien (z. B. Kalzium, Magnesium, Kalium) aus dem Oberboden ausgewaschen werden. Verantwortlich für die Versauerung sind heute vor allem Emissionen aus Verbrennungsprozessen, welche Stickoxide (NO x ) enthalten

1