This data set includes the results of high-resolution digital image correlation (DIC) analysis and digital elevation models (DEM) applied to analogue modelling experiments (Table 1). Six generic analogue models are extended on top of a rubber sheet. In Series A, as extension velocity increases, the initial biaxial plane strain condition evolves into triaxial constrictional or intermediate strain. Models A1 and A2 are two-phase models and Model A3 is a three-phase model. Conversely, in Series B, as extension velocity decreases, the model starts with triaxial constrictional strain and ends up with biaxial plane or intermediate triaxial strain. Models B1and B2 are two-phase models and Model B3 is a three-phase model. Detailed descriptions of the experiments can be found in Liu et al. (2025) to which this data set is supplement. The data presented here are visualized as topography, the horizontal cumulative surface strain, and incremental profiles.
In this dataset we provide top-view photos and perspective photos (to create topographic data, i.e. Digital Elevation Models, DEMs) documenting analogue model deformation. For more details on modelling setup, experimental series Wang et al. (2021), to which this dataset is supplementary material. For details on analogue materials refer to Del Ventisette et al., 2019, Maestrelli et al. (2020). The analogue modelling experiments were carried out at the TOOLab (Tectonic Modelling Laboratory) of the Institute of Geosciences and Earth Resources of the National Research Council of Italy, Italy, and the Department of Earth Sciences of the University of Florence. The laboratory work that produced these data was supported by the European Plate Observing System (EPOS) and by the Joint Research Unit (JRU) EPOS Italia. Additional analysis, following the original work, was supported by the “Monitoring Earth’s Evolution and Tectonics” (MEET) project
This data set includes overviews depicting the surface evolution (time-lapse photography, topography analysis, digital image correlation [DIC] analysis), as well as and progressive physical cross-section analysis of 18 laboratory experiments (analogue models) testing the influence of rheologically weak layers (i.e. layers with [a component of] viscous behaviour) and basal fault kinematics on deformation in the weak layer’s overburden. This model set-up was inspired by the geological situation in the Swiss Alpine Foreland. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). Detailed descriptions of the model set-up preparation and results, as well as the monitoring techniques can be found in Zwaan et al. (in review).
This dataset presents the raw data of an experimental series of analogue models performed to investigate the influence of inherited brittle fabrics on narrow continental rifting. This model series was performed to test the influence of brittle pre-existing fabrics on the rifting deformation by cutting the brittle layer at different orientations with respect to the extension direction. An overview of the experimental series is shown in Table 1. In this dataset we provide four different types of data, that can serve as supporting material and for further analysis: 1) The top-view photos, taken at different steps and showing the deformation process of each model; they can be used to interpret the geometrical characteristics of rift-related faults; 2) Digital Elevation Models (DEMs) used to reconstruct the 3D deformation of the performed analogue models, allowing for quantitative analysis of the fault pattern. 3) Short movies built from top-view photos which help to visualize the evolution of model deformation; 4) line-drawing of fault and fracture patters to be used for fault statistical quantification. Further details on the modelling strategy and setup can be found in Corti (2012), Maestrelli et al. (2020), Molnar et al. (2020), Philippon et al. (2015), Zwaan et al. (2021) and in the publication associated with this dataset. Materials used for these analogue models were described in Montanari et al. (2017) Del Ventisette et al. (2019) and Zwaan et al. (2020).
This data set is a description of a novel analogue modelling method used to run lithospheric-scale tectonic models, and to uniquely monitor these models through X-Ray CT-scanning techniques at the Tectonic Modelling Lab of the University of Bern (Switzerland). It includes information on the model set-up and model materials, and includes a step-by-step description of the general modelling procedure. A first application of this novel procedure, for the simulation of lithospheric scale rifting processes can be found in Zwaan & Schreurs (2023a) in Tectonics, with supplementary data publicly available via GFZ Data Services (Zwaan & Schreurs 2023b). The results of this work prove the feasibility of the method, and opens the door to a broad variety of new tectonic modelling studies.
This dataset includes the results of 5 lithospheric-scale, brittle-ductile analogue experiments of extension and subsequent shortening performed at the Geodynamic Modelling Laboratory at Monash University (Melbourne, Australia). Here we investigated (1) the influence of the mechanical stratification of the model layers on rift basins during extension and (2) the influence of these basins on shortening-related structures. This dataset consists of images and movies that illustrate the evolution of topography (i.e., model surface height) and cumulative and incremental axial strain during the experiments. Topography and strain measures were obtained using digital image correlation (DIC) which was applied to sequential images of the model surface. This dataset also includes orthophotos (i.e., orthorectified images) of the model surface, overlain with fault traces and basins that were interpreted using QGIS. The experiments are described in detail in Samsu et al. (submitted to Solid Earth), to which this dataset is supplementary.
This dataset includes raw data used in the paper by Reitano et al. (2022), focused on the effect of imposed boundary conditions (regional slope and rainfall rate) on the morphological evolution of analogue landscapes; the paper also focuses on applicability of stream power laws on analogue models, defining if and how the parametrization used in natural landscapes works in analogue ones. The experiments have been carried out at Laboratory of Experimental Tectonics (LET), University “Roma Tre” (Rome). Detailed descriptions of the experimental apparatus and experimental procedures implemented can be found in the paper to which this dataset refers. Here we present: • Pictures recording the evolution of the models. • GIFs showing time-lapses of models. • Raw DEMs of the models, used for extracting data later discusses in the paper. • Raw channels data (.mat files).
This dataset presents the raw data from two experimental series of analogue models and four numerical models performed to investigate Rift-Rift-Rift triple junction dynamics, supporting the modelling results described in the submitted paper. Numerical models were run in order to support the outcomes obtained from the analogue models. Our experimental series tested the case of a totally symmetric RRR junction (with rift branch angles trending at 120° and direction of stretching similarly trending at 120°; SY Series) or a less symmetric triple junction (with rift branches trending at 120° but with one of these experiencing orthogonal extension; OR Series), and testing the role of a single or two phases of extension coupled with effect of differential velocities between the three moving plates. An overview of the performed analogue and numerical models is provided in Table 1. Analogue models have been analysed quantitatively by means of photogrammetric reconstruction of Digital Elevation Model (DEM) used for 3D quantification of the deformation, and top-view photo analysis for qualitative descriptions. The analogue materials used in the setup of these models are described in Montanari et al. (2017), Del Ventisette et al. (2019) and Maestrelli et al. (2020). Numerical models were run with the finite element software ASPECT (e.g., Kronbichler et al., 2012; Heister et al., 2017; Rose et al., 2017).
This dataset includes video sequences and strain analysis of 12 analogue models studying crustal-scale deformation and basin reactivation, performed at the Laboratory of Tectonic modelling of the University of Rennes 1. These models show how parameters such as crustal strength, tectonic inheritance and boundary conditions (ishortening/ stretching) control both the distribution of crustal strain and the possibility for pre-existing structures to be reactivated. This dataset includes top-view movies of the 12 models, including strain analysis based on displacement vectors obtained from digital image correlation. Detailed descriptions of models can be found in Guillaume et al. (2022, special issue of Solid Earth on Analogue modelling of basin inversion) to which this dataset is supplementary.
This data set includes videos depicting the surface evolution of 29 analogue models on crustal extension, as well as 4D CT imagery (figures and videos) of two of these experiments. The experiments examined the influence of the method for driving extension (orthogonal or rotational) on the interaction between rift segments using a brittle-viscous set-up. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern, Bern, Switzerland (UB). Brittle and viscous layers are both 4 cm thick, extension velocities are 8 mm/h so that a model duration of 5 h yields a total extension of 40 mm (e = ca. 13%, given an initial model width of ca. 30 mm). Next to the mode of extension (orthogonal or rotational), we also test the effect of the degree of onderlap (angle φ). Detailed descriptions of the experiments and monitoring techniques can be found in Zwaan et al. (2020).
Origin | Count |
---|---|
Wissenschaft | 15 |
Type | Count |
---|---|
unbekannt | 15 |
License | Count |
---|---|
offen | 15 |
Language | Count |
---|---|
Englisch | 15 |
Resource type | Count |
---|---|
Keine | 15 |
Topic | Count |
---|---|
Boden | 9 |
Lebewesen & Lebensräume | 5 |
Luft | 3 |
Mensch & Umwelt | 15 |
Wasser | 4 |
Weitere | 15 |