API src

Found 4 results.

GEOSCRAPE zircon database

This database contains a compilation of published zircon geochronology, chemistry and isotope data. The database was created through automated web scraping of the Figshare data repository. Data included U-Pb and Pb-Pb dating, Lu-Hf isotopes, trace element and rare earth element chemistry and isotopes. Where available, metadata on the analytical method, lithology, sample description and sampling coordinates are included. All analyses include a citation and doi link to the original data hosted on Figshare. See metadata table for descriptions of table headers. See associated manuscript for web scraping code.

Geochemistry of late-Variscan felsic igneous rocks of the Erzgebirge-Vogtland metallogenic province - Part 2: F-poor biotite and two-mica granites

This data set is Part 2 of the compiles whole-rock chemical data for late-Variscan low-F biotite and two-mica granites in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen. The group of F-poor biotite granites is represented by the composite massifs of Kirchberg and Niederbobritzsch, the Plohn Granite Suite (PGS), the Aue Granite Suite (AGS), and the subsurface granites of Beiersdorf und Bernsbach. For the group of two-mica granites, compositional data for the multi-stage Bergen massif and the granites from Lauter and Schwarzenberg are reported (Figure 1). Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic and hydrothermal processes involving late-stage residual melts and high-T late- to post-magmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements. Interaction with the various metamorphic country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns in the endocontact zones and zones influenced by surface weathering. The data set reports whole-rock geochemical analyses for enclaves, granites, aplites, endocontact rocks, and some facial varieties. The data are presented as Excel (xlsx) and machine-readable txt formats. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.

Iran and SE Anatolia Meso-Cenozoic igneous rock compositions

Compilation of igneous rock compositions from Iran and SE Anatolia Meso-Cenozoic (ISA), including major, trace element and Sr-Nd-Pb isotopic data as published in Lustrino et al. (2021).

Geochemistry of late-Variscan felsic igneous rocks of the Erzgebirge-Vogtland metallogenic province - Part 1: P- und F-rich Li-mica granites

This data set is the 1st part of a mini-series assembling whole-rock chemical data for late-Variscan granites of the Erzgebirge-Vogtland metallogenic province in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen, which is dedicated to the group of P-F-rich Li-mica granites. Listed are data from the massifs/plutons of Eibenstock in the western Erzgebirge and Annaberg, Geyer, Pobershau, and Seiffen in the central Erzgebirge (Figure 1). All these occurrences represent composite bodies made-up of texturally and geochemically distinct, but cogenetic sub-intrusions, which are associated with intra- und perigranitic aplitic dykes, pegmatitic schlieren, and frequently mineralized quartz veins and greisens (Tables 1-3). These granites exhibit moderately to strongly elevated concentrations of P, F, Li, Rb, Cs, Ta, Sn, W and U, but are low to very low in Ti, Mg, V, Sc, Co, Ni, Sr, Ba, Y, Zr, Hf, Th, and the REEs. Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic processes involving late-stage residual melts and high-T late- to postmagmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements (P, F, Li, Rb, Cs, Ba, Sr). Interaction with the various country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns. The data set reports whole-rock geochemical analyses for granites, aplites, and endocontact rocks obtained for the massifs/plutons of Eibenstock, Pobershau, Satzung, Annaberg, and Geyer. Data are provided as separate excel and csv files. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.

1