API src

Found 66 results.

Related terms

Biogeochemical interface formation in soils as controlled by different components

We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.

Physicochemical Aging Mechanisms in Soil Organic Matter (SOM- AGING): II. Hydration-dehydration mechanisms at Biogeochemical Interfaces

Soil organic matter (SOM) controls large part of the processes occurring at biogeochemical interfaces in soil and may contribute to sequestration of organic chemicals. Our central hypothesis is that sequestration of organic chemicals is driven by physicochemical SOM matrix aging. The underlying processes are the formation and disruption of intermolecular bridges of water molecules (WAMB) and of multivalent cations (CAB) between individual SOM segments or between SOM and minerals in close interaction with hydration and dehydration mechanisms. Understanding the role of these mediated interactions will shed new light on the processes controlling functioning and dynamics of biogeochemical interfaces (BGI). We will assess mobility of SOM structural elements and sorbed organic chemicals via advanced solid state NMR techniques and desorption kinetics and combine these with 1H-NMR-Relaxometry and advanced methods of thermal analysis including DSC, TGADSC- MS and AFM-nanothermal analysis. Via controlled heating/cooling cycles, moistening/drying cycles and targeted modification of SOM, reconstruction of our model hypotheses by computational chemistry (collaboration Gerzabek) and participation at two larger joint experiments within the SPP, we will establish the relation between SOM sequestration potential, SOM structural characteristics, hydration-dehydration mechanisms, biological activity and biogechemical functioning. This will link processes operative on the molecular scale to phenomena on higher scales.

Forschergruppe (FOR) 861: Cross-scale Monitoring: Biodiversity and Ecosystem Functions, Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Highly-resolved imaging in artificial and natural soils to yield dynamics and structure of interfaces from oxygen, pH and water content

In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids, nutrients and pollutants. Both sides are closely related and affect each other from small scale to larger scale. Soil structures such as aggregates, roots, layers, macropores and wettability differences occurring in natural soils enhance the patchiness of these distributions. At the same time the spatial distribution and temporal dynamics of these important parameters is difficult to access. By applying non-destructive measurements it is possible to overcome these limitations. Our non-invasive fluorescence imaging technique can directly quantity distribution and changes of oxygen and pH. Similarly, the water content distribution can be visualized in situ also by optical imaging, but more precisely by neutron radiography. By applying a combined approach we will clarify the formation and architecture of interfaces induces by oxygen consumption, pH changes and water distribution. We will map and model the effects of microbial and plant root respiration for restricted oxygen supply due to locally high water saturation, in natural as well as artificial soils. Further aspects will be biologically induced pH changes, influence on fate of chemicals, and oxygen delivery from trapped gas phase.

Biogeochemical Processes in Tropical Soils

In recent years science has taken an increased interest in mineralization processes in tropical soils in particular under minimal tillage operations. Plant litter quality and management strongly affect mineralization-nitrification processes in soil and hence the fate of nitrogen in ecosystems and the environment. Plant secondary metabolites like lignin and polyphenols are poorly degradable and interact with proteins (protein binding capacity) and hence protect them from microbial attack. Nitrification, a microbiological process, directly and indirectly influences the efficiency of recovery of N in the vegetation as well as the loss of N (through denitrification and leaching) causing environmental pollution to water bodies and contributes to global warming (e.g. the greenhouse gas N2O is emitted as a by-product of nitrification and denitrification). Nitrifiers comprise a relatively narrow species diversity (at least as known to date) and are generally thought to be sensitive to low soil pH and stress. Despite these properties nitrification occurs in acid tropical soils with high levels of aluminium and manganese. Thus the main objective of the project will be the identification of micro-organisms and mechanisms responsible for mineralization-nitrification processes in acid tropical soils and the influence of long-term litter input of different chemical qualities and minimal tillage options. The project will include the use of stable isotopes (15N, 13C), mass spectrometry, gas chromatography (CO2, N2O), biochemical methods (PLFA) and molecular biology (16s rRNA., PCR, DGGE)

Coordination and administration of the priority programme SPP 1315 Biogeochemical Interfaces in Soil, Biotic and abiotic factors that dive the function of microbial communities at biogeochemical interfaces in different soils (BAMISO)

Biogeochemical interfaces shape microbial community function in soil. On the other hand microbial communities influence the properties of biogeochemical interfaces. Despite the importance of this interplay, basic understanding of the role of biogeochemical interfaces for microbial performance is still missing. We postulate that biogeochemical interfaces in soil are important for the formation of functional consortia of microorganisms, which are able to shape their own microenvironment and therefore influence the properties of interfaces in soil. Furthermore biogeochemical interfaces act as genetic memory of soils, as they can store DNA from dead microbes and protect it from degradation. We propose that for the formation of functional biogeochemical interfaces microbial dispersal (e.g. along fungal networks) in response to quality and quantity of bioavailable carbon and/or water availability plays a major role, as the development of functional guilds of microbes requires energy and depends on the redox state of the habitat.To address these questions, hexadecane degradation will be studied in differently developed artificial and natural soils. To answer the question on the role of carbon quantity and quality, experiments will be performed with and without litter material at different water contents of the soil. Experiments will be performed with intact soil columns as well as soil samples where the developed interface structure has been artificially destroyed. Molecular analysis of hexadecane degrading microbial communties will be done in vitro as well as in situ. The corresponding toolbox has been successfully developed in the first phase of the priority program including methods for genome, transcriptome and proteome analysis.

SP 1.5 Molekulare Charakterisierung von gelösten organischen Stoffen in der Meeresoberflächen-Mikroschicht (SML) und deren Einfluss auf den anorganischen Kohlenstoffkreislauf

Unsere Motivation ist es, die Rolle von gelöstem organischem Material (DOM) in marinen Oberflächenfilmen (SML) als eine Schlüsselkomponente zu verstehen, die den Gasaustausch zwischen Atmosphäre und Meer, die Karbonatchemie, sowie die Ökophysiologie der assoziierten Organismen beeinflusst (Engel et al., 2017). Während unserer Vorarbeiten haben wir Hinweise auf einen bisher unbekannten Zusammenhang zwischen DOM und Karbonatchemie in der SML gefunden, sowie auf eine hohe räumlich-zeitliche Dynamik in der DOM-Zusammensetzung. Obwohl die hohe Heterogenität des SML-DOM-Geometabolom (d.h. die Gesamtheit des DOM-Pools, der durch biotische und abiotische Prozesse produziert und modifiziert wird) bekannt ist, gibt es wenige detaillierte Studien darüber. Insgesamt gibt es noch kein mechanistisches Verständnis darüber, unter welchen Bedingungen DOM in der SML in verschiedene chemische Fraktionen aufgeteilt wird. Dies liegt an der derzeit geringen Verfügbarkeit von Daten von einer größeren Anzahl von Untersuchungsstandorten unter unterschiedlichen Umwelt- und Versuchsbedingungen, sowie an einen Mangel an interdisziplinären Studien, die Physik, Geochemie und Biologie kombinieren. Mit anderen Worten, uns fehlen grundlegende (organo-)geochemische Informationen von der größten Luft-Wasser-Grenzfläche der Erde, mit unbekannten Konsequenzen für den damit verbundenen Austausch von klimarelevanten Gasen. In diesem Projekt streben wir an, diese Lücke durch sich ergänzende Messungen der DOM-Zusammensetzung und anorganischer Kohlenstoff-Systemparameter zu schließen. Die Relevanz für die Forschungseinheit BASS ergibt sich aus dem Ziel unseres Teilprojekts, die fehlenden grundlegenden biogeochemischen Informationen des SML-DOM-Inventars zur Verfügung zu stellen und sie in den Kontext der Ökosystemprozesse in der SML zu setzen, einschließlich der DOM-Produktion (SP1.1) sowie des mikrobiellen (SP1.2) und photochemischen (SP1.4) Umsatzes. Darüber hinaus werden wir den Beitrag des DOM-Geometaboloms zum Säure-Basen-Gleichgewicht der SML untersuchen, von dem wir erwarten, dass es die Gasgleichgewichte in der Grenzfläche - insbesondere im Kohlensäuresystem und damit auch die Treibhausgasflüsse - beeinflusst (SP2.1).

Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Quantification of active interfaces with respect to dissolved chemicals in unsaturated structured soil

During the first project period we developed a general approach to quantify soil pore structure based on X-ray micro-tomography Vogel et al. (2010) which is applicable at various scales to cover soil pores larger that 0.05 mm in a representative way. Based on this method we generated equivalent network models to numerically simulate flow and transport of dissolved chemicals. The existing network model was extended to handle reactive transport and infiltration processes which are especially critical for matter flux in soil. The results were compared to experimental findings. The original research question 'what does a particle see on its way through soil' could be answered quantitatively for various boundary conditions including steady state flux and infiltration. However, we identified various critical aspects of the proposed modeling concept which will be in the focus of the second period. This includes 1) the spatial arrangement of interfaces having different quality which is crucial for chemical interactions and pore scale water dynamics, 2) the realistic multiphase dynamics at the pore scale which need to reflect the dynamic pressure and movement of trapped non-wetting phase and 3) the parametrization of structural complexity which need to be developed beyond the measurement of continuous Minkowski functions to allow the development of quantitative relations between structure and function. These aspects will be explored in a joint experiments in cooperation with partners within the SPP.

The parent material as major factor for the properties of the biogeochemical interface: Integrative analysis

The formation of biogeochemical interfaces in soils is controlled, among other factors, by the type of particle surfaces present and the assemblage of organic matter and mineral particles. Therefore, the formation and maturation of interfaces is studied with artificial soils which are produced in long-term biogeochemical laboratory incubation experiments (3, 6, 12, 18 months. Clay minerals, iron oxides and charcoal are used as major model components controlling the formation of interfaces because they exhibit high surface area and microporosity. Soil interface characteristics have been analyzed by several groups involved in the priority program for formation of organo-mineral interfaces, sorptive and thermal interface properties, microbial community structure and function. Already after 6 months of incubation, the artificial soils exhibited different properties in relation to their composition. A unique dataset evolves on the development and the dynamics of interfaces in soil in the different projects contributing to this experiment. An integrated analysis based on a conceptual model and multivariate statistics will help to understand overall processes leading to the biogeochemical properties of interfaces in soil, that are the basis for their functions in ecosystems. Therefore, we propose to establish an integrative project for the evaluation of data obtained and for publication of synergistic work, which will bring the results to a higher level of understanding.

Redox processes along gradients

The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.

1 2 3 4 5 6 7