s/biotic degradation/abiotic degradation/gi
Im Rahmen des Verbundvorhabens RE_SORT werden eine Quasikontinuierliche Batch- als auch die Mikrowellen-Pyrolyse entwickelt, die das Recycling von dickwandigen Faserverbundstrukturen wirtschaftlich ermöglichen. In beiden Verfahren wird das Matrixharz durch externe Energiezufuhr in ölige und vor allem gasförmige Kohlenwasserstoffverbindungen überführt. Im vorliegendem Teilvorhaben wird die Entwicklung der quasikontinuierliche Batchpyrolyse (QBP) aus genehmigungsrechtlicher und technischer Sicht beratend unterstützt. Weiterhin wird im Versuchsbetrieb der QBP-Technikumsanlage die für die Verfahrensentwicklung notwendige Analytik der entstehenden Pyrolysegase durchgeführt. Die motorische Umsetzung der Pyrolysegase, die Beurteilung von Emissionen und die Beurteilung der aus den Faserverbundstrukturen gebrauchter Windkraftflügel erzeugten Glas- und Carbonfasern wird unterstützt. Zur Beurteilung des QBP-Verfahrens und der Mikrowellenpyrolyse aus wirtschaftlicher Sicht werden Planrechnungen über die voraussichtliche technische Nutzungsdauer einer jeweils großtechnischen Anlage durchgeführt. Im Rahmen der Planrechnungen werden alle Kosten und Erlöse des Recyclings von gebrauchten Windkraftflügeln und der erzeugten Produkte (Glasfasern, Carbonfasern, Pyrolyseöle, Strom, Wärme) ausgewiesen. Die Beurteilung der Verfahren aus ökobilanzieller Sicht erfolgt für die Mikrowellenanalyse indikativ und das QBP-Verfahren umfänglich, unter Berücksichtigung auch der Anlagentechnik und der für den Betrieb einer großtechnischen QBP-Anlagen erforderlichen Infrastruktur. Die Untersuchungen werden in Anlehnung der DIN 14040 und 14044 für relevante Wirkungskategorien (Klimawandel, Versauerung, photochemische Oxidantienbildung, Abbau der stratosphärischen Ozonschicht und abiotischer Ressourcenverbrauch) durchgeführt.
Es wird u.a. ein wissenschaftlicher Workshop im Juni 1986 in Amsterdam (Free University) vorbereitet. Untersucht werden Umweltchemie (Bestaendigkeit, Transportprozesse, Umwandlung), analytische Chemie, Metabolismus in lebenden Organismen und biologische Wirkungen von Organophosphorverbindungen (natuerliche und anthrapogene Stoffe, u.a. Pestizide), die z.T. nur langsam vollstaendig biologisch und/oder chemisch abgebaut werden. Bei Grossverwendung solcher Produkte koennen Rueckstandsspuren mit hoher Aktivitaet in niedrigen Konzentrationen relevant sein.
Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.
Es geht darum, MG-Mengen definierter Photo-Abbauprodukte technischer Nitro-Aromaten zu erhalten und diese zu charakterisieren und zu identifizieren. Hierzu werden die gereinigten Ausgangsstoffe unter Bedingungen, die den natuerlichen weitestgehend angepasst sind, belichtet. Die Rohphotolysate werden chromatographisch aufgetrennt und die isolierten Reinsubstanzen identifiziert. Ziel ist jeweils die Kenntnis der Abbauraten und der Abbaumechanismen.
Pilotstudie zur Erstellung von Programmsystemen zur Registrierung und Wiedergabe von chemischen Strukturen auf der Basis des mathematischen-logischen Modells der Chemie unter besonderer Betonung des Einsatzes von graphischen Sicht- und Zeichengeraeten. Programmsystem zur Untersuchung von abiotischen Reaktionsmoeglichkeiten von Xenobiotika in der Umwelt und zur Vorhersage von Folgeprodukten und zu deren Bereitstellung als Abfrageobjekte des Datenbanksystems.
In diesem Vorhaben soll ein mathematisches Modell entwickelt werden, das die wichtigsten interagierenden Prozesse nachbildet. Dabei handelt es sich um die konkurrierenden Prozesse der Detritusdegradierung in den verschiedenen Schichten des Sedimentes mit unterschiedlichen Oxidationspotentialen, um die abiotischen und mikrobiologisch ablaufenden Redoxprozesse, um die physikalischen und biologisch induzierten Transportprozesse und um das microbial foodweb . Die Kreisläufe der Elemente C, 0, N, P, Si, S, Fe und Mn sollen mit ihren Massenbilanzen dargestellt werden. Das Modell besteht aus einer Reihe von partiellen Differentialgleichungen (Diffusions-Reaktionsgleichungen) für die Konzentrationen der beteiligten Stoffkomponenten. Dabei werden wir uns auf die vertikale Dimension (bis 30 cm) beschränken. Als Antrieb werden Annahmen über die zeitlich veränderlichen Oberflächenrandbedingungen (Konzentrationen im überstehenden Wasser, Eintrag durch Sedimentation usw.) benutzt. Die Arbeit synthetisiert frühere und gegenwärtig laufende Forschungsaktivitäten zu einem Gesamtbild. Es ist zu erwarten, dass dabei durchaus erhebliche Fortschritte im Verständnis auch der Einzelprozess erreicht werden, weil der Zwang zur konzeptionellen Klarheit in einem mathematischen Modell Wissenslücken und Konsistenzprobleme aufdeckt. Ein wesentliches Nebenprodukt wird die Erarbeitung einer Modellversion herausragend gut verständlicher graphischer Darstellung der Ergebnisse und einfachster Bedienung sein.
Der mikrobielle Abbau von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) durch Mischkulturen in komplexen Reaktorsystemen laesst sich nur analytisch-chemisch anhand der Abnahme des Substrats oder durch den Nachweis entstehender Abbauprodukte verfolgen. Biologische Tests fuer die qualitative und quantitative Bestimmung des Biodegradations-Prozesses, z.B. der direkte Nachweis der enzymatischen Aktivitaet, fehlen. Ziel des beantragten Forschungsvorhabens ist die Ermittlung des genetischen Potentials und der funktionellen Aktivitaet von mikrobiellen Lebensgemeinschaften fuer den PAK-Abbau durch Kombination von molekularbiologischen Arbeitsmethoden wie der Gensonden-Technik mit der klassischen mikrobiologischen Vorgehensweise. Am Beispiel des Phenathrenabbaus soll versucht werden, das genetische Potential fuer diesen katabolischen Stoffwechselweg mittels spezifischer Gensonden zu erfassen.
ELPOS - Kriterien für die Persistenz und das Potential für Langstreckentransport von Pestiziden und Industriechemikalien ELPOS läuft seit Oktober 1999 und wird durch das Umweltbundesamt (UBA) finanziert. Ziel des Projektes ist die Entwicklung und Untersuchung von quantitativen Kriterien für das Potential für Langstreckentransport und die Persistenz von organischen Verbindungen. Das Multimediamodell ELPOS-1.0 beschreibt chemische Abbau- und Transformationsprozesse. Es wurde zur Berechnung der allgemeinen Persistenz und der charakteristischen Transportzeit in der Luft verwendet. Diese beiden beschreibenden Größen berücksichtigen den Austausch zwischen und den Abbau in Transportmedien und sind unabhängig von den Emissionen. Physikalisch-chemische Labordaten und Abbauraten in der Umwelt von 65 zurzeit benutzten Pestiziden, 21 persistenten organischen Schadstoffen (POP) und 23 Industriechemikalien wurden zusammengestellt. Eine Sensitivitätsanalyse zeigt, dass die Sensitivität hauptsächlich von den Eigenschaften der Chemikalien und einigen Umweltparametern abhängt. Die Reihenfolge der Chemikalien kann beeinflusst werden, wenn die Unsicherheit der Parameter berücksichtigt wird. Das gilt besonders, wenn bei der Sensitivitätsanalyse anstatt des Median das 90%-Perzentil verwendet wird. Das Modell wurde modifiziert, um die Temperaturabhängigkeit in einem Bereich zwischen 5°C und 30°C darzustellen. Die allgemeine Aufenthaltszeit und die charakteristische Transportdistanz wiesen eine starke Abhängigkeit von der Temperatur auf. Die charakteristische Transportdistanz kann in Abhängigkeit von den chemischen Eigenschaften sowohl mit der Temperatur ansteigen als auch abnehmen, während die Aufenthaltszeit in jedem Fall invers mit der Temperatur korreliert. Die charakteristische Transportdistanz wurde mit gemessenen räumlichen Konzentrationsgradienten in der Umwelt verglichen. Monitoring-Daten von verschiedenen PCB-Kongeneren wurden entlang eines Nord-Süd-Transektes erhoben und zeigten die gleiche Reihenfolge von Chemikalien, wie sie anhand der charakteristischen Transportdistanz vorhergesagt wurde. Unter Berücksichtigung der Unsicherheit und den begrenzten Möglichkeiten von ELPOS kann die allgemeine Aufenthaltszeit und die charakteristische Transportdistanz der Analyse, Reihung und Begutachtung von Substanzen hinsichtlich Persistenz und Potential für Langstreckentransport dienlich sein. So wurden durch Begutachtung der derzeit benutzten Pestizide einige Kandidaten für weitere Untersuchungen und Maßnahmen identifiziert.
Durch DynaDeep wird ein Verständnis der Funktionsweise und Relevanz des Land-Meer Übergangs im Untergrund von Hochenergiestränden gewonnen werden. Wir nehmen an, dass dieser einen hoch dynamischen Bioreaktor und einzigartiges mikrobiologisches Habitat darstellt und Netto-Stoffflüsse in Richtung Meer stark beeinflusst. Um dieses Ziel zu erreichen werden sechs Teilprojekte gemeinsam Felduntersuchungen und experimentelle Arbeiten durchführen und diese mit mathematischen Modellen integrativ kombinieren. Teilprojekt P3 wird die Quellen, die Zusammensetzung und die Umwandlungen organischen Materials als Hauptfaktoren biogeochemischer Prozesse im tiefen subterranen Ästuar untersuchen. Wir verfolgen die Hypothese, dass der transiente Charakter des tiefen Untergrundes entscheidend für den Umsatz und die molekulare Umwandlung organischen Materials durch wechselwirkende abiotische und biotische Prozesse ist. Eine Kombination von gezielten Laborexperimenten und Feldarbeiten wird angewandt zur Identifizierung und Charakterisierung von (1) potentiellen Quellen des organischen Materials im tiefen subterranen Ästuar, (2) abiotischen Veränderungen der Menge und Zusammensetzung des gelösten organischen Materials (DOM) an zeitlich und räumlich variablen Redox-Grenzflächen, und (3) Abbau und Umwandlung von DOM durch mikrobielle Gemeinschaften. Dabei wird die detaillierte molekulare Information genutzt, um Zusammenhänge zwischen der DOM-Zusammensetzung und der Zusammensetzung und Aktivität der mikrobiellen Gemeinschaften zu entschlüsseln. Die Charakterisierung des organischen Materials erfolgt durch modernste molekulare Ansätze wie ultrahochauflösende Fourier-Transformations-Ionenzyklotronresonanz-Massenspektrometrie (FT-ICR-MS) und Ultra-Leistungs-Flüssigkeitschromatographie, ergänzt durch Analysen von stabilen und Radiokohlenstoff-Isotopen. Molekulare Marker werden als Diagnosewerkzeuge für spezifische biogeochemische Zustände des tiefen subterranen Ästuars und der daraus resultierenden mikrobiellen Nischen etabliert. Die Ergebnisse von P3 werden das gekoppelte hydrogeologische Transport-Reaktionsmodell (P6) mit Reaktivitätstermen bestücken und Informationen über Quellen und Alter von DOM (P1) liefern. Die in P3 gewonnenen molekularen Daten werden im Zusammenhang mit den Daten zur mikrobiellen Gemeinschaft (P5) und zur Verteilung der relevanten Spurenelemente (P4) interpretiert und tragen zu einem mechanistischen Verständnis der mikrobiellen Atmung bei (P2).
Untersuchung des reduktiven und oxidativen Abbaus halogenierter Kohlenwasserstoffe. Identifizierung radikalischer Zwischenprodukte und Analyse molekularer Endprodukte. Erstellung von Reaktionsmechanismen. Messung absoluter Geschwindigkeitskonstanten fuer die einzelnen Elementarschritte. Untersuchung des Einflusses der molekularen Struktur. Vergleich zwischen Abbau in homogener Loesung (strahlenchemische Methode) und heterogener Suspension (Photokatalyse an Halbleiterpartikeln, zB TiO2).
Origin | Count |
---|---|
Bund | 105 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 99 |
Text | 2 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 7 |
offen | 99 |
Language | Count |
---|---|
Deutsch | 91 |
Englisch | 22 |
Resource type | Count |
---|---|
Dokument | 3 |
Keine | 72 |
Webseite | 32 |
Topic | Count |
---|---|
Boden | 74 |
Lebewesen und Lebensräume | 89 |
Luft | 64 |
Mensch und Umwelt | 106 |
Wasser | 74 |
Weitere | 106 |