API src

Found 24 results.

INSPIRE: German Borehole Locations - Mecklenburg Western Pomerania (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Berlin (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Hamburg (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Schleswig Holstein (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony. zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Bavaria (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - North Rhine-Westphalia (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Saxony (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE TH Boden ALKIS

Anhang III der INSPIRE-Richtlinie definiert dieses Thema wie folgt: "Beschreibung von Boden und Unterboden anhand von Tiefe, Textur, Struktur und Gehalt an Teilchen sowie organischem Material, Steinigkeit, Erosion, gegebenenfalls durchschnittliches Gefälle und erwartete Wasserspeicherkapazität." Die Daten werden halbjährlich aus ALKIS abgeleitet.

Fiber optic data while primary cementing - Distributed Temperature and Distributed Vibrational Energy from a Distributed Dynamic Strain Sensing

For the safe and sustainable use of deep geothermal wells, construction must proceed as intended. An integer well ensures that all fluids within the borehole are always under control. One of the most critical steps is the cementing of the casings. Despite extensive experience in the petroleum industry, challenges with well integrity are a worldwide phenomenon. One reason could be that conventional measurement methods can only verify the success of cementing once the cement job has been completed. In contrast, distributed fiber optic sensing methods can monitor the entire cementing process along the entire drilling path. This data set contains the results of the Distributed Temperature Sensing (DTS) and the derived product "vibrational energy" of a Distributed Dynamic Strain Sensing (DDSS or DAS) of the whole cementing process. We collected this data during the primary cementing of an injection well's 874m surface casing at the geothermal site Schäftlarnstr, Munich. We measured the cement placement and 24 hours of the early hydration. We obtained the data with a fiber optic cable permanently deployed behind the casing. The cable contained Multi-Mode fibers (for DTS) and Single-Mode fibers (for DAS). Table 1 in the data description document shows the units used and the key parameters of our measurement. In the first step, we allocated each channel to its depth in the borehole. We used a cold spray (for DTS) and a tap test (for DAS) to locate the entry to the borehole. To obtain the vibrational energy of the DAS data, we summarized the raw dynamic strain with a Root Mean Square (RMS) in a window of 60 seconds. We calculated the vibrational energy for a wide range of different frequency ranges (Butterworth bandpass). The data are provided in csv formats and further explained in the data description document. Acknowledgement: GFK-Monitor is funded by the Federal Ministry for Economic Affairs and Climate Action via the Project Management Jülich (PTJ) (funding code: 03EE4036, project duration: July 1, 2022 - June 30, 2025). The fiber optic infrastructure was provided by GAB (Geothermie Allianz Bayern): Funded by: Bayerisches Staatsministerium für Wissenschaft und Kunst (Hauptgebäude: Salvatorstraße 2, 80333 München).

Deutscher Bohrungsnachweis

Der Deutsche Bohrungsnachweis (German Borehole Locations - GBL) bietet Zugriff auf Bohrdaten in der Bundesrepublik Deutschland, die von den Staatlichen Geologischen Diensten der Bundesländer (SGD) bereitgestellt werden. In Deutschland sind die SGD für die Speicherung, Verarbeitung und Weitergabe der Informationen über Bohrungen zuständig. Im Rahmen eines Gemeinschaftsprojektes werden die Bohrdaten in generalisierter Form über das Austauschformat BoreholeML bei der BGR zentral zusammengeführt. Der Geodatensatz beinhaltet die übermittelten Stammdaten der Bohrungen aus den beteiligten Ländern in BoreholeML Kodierung. Diese Kodierung kann über die mitgelieferte Data Specification -codeLists- in Klartext aufgelöst werden. Die gleichen Informationen sind auch abrufbar in der Bohrpunktkarte Deutschland https://boreholemap.bgr.de/ auf dem Reiter „Stammdaten“ zu jeder Bohrung.

1 2 3