API src

Found 2 results.

Sensitivity of boron adsorption on clays to changes in seawater chemistry

The adsorption of boron on detrital particles like clay or metal oxides is thought to be a major mechanism driving changes in the boron isotopic composition of seawater on geologic timescales. However, the sensitivity of adsorption parameters to long-term changes in the seawater concentration of major ions (Mg2+, Ca2+, SO42-) and dissolved inorganic carbon (HCO3-, CO32-) is not known. We conducted multiple sets of adsorption experiments that consist of suspending pretreated clay minerals (either kaolinite, smectite or illite) in artificial seawater with a modified chemical composition. Specifically, we investigate adsorption in seawater with a major ion composition resembling that of the Cretaceous (100 Ma) and the Eocene (50 Ma), as well as modern seawater with either reduced or elevated concentrations of dissolved inorganic carbon. We finally combine the results with modeled values for the mineral assemblage of detrital sediment to constrain boron adsorption fluxes in the past. The dataset consists of two sheets that store (1) the results of our adsorption experiments and (2) the modeled sediment properties. Experiments were performed on KGa-1b kaolinite, SWy-3 smectite and IMt-2 illite obtained from the Clay Mineral Society. For each of these clays, a consistent particle size fraction of 2 – 0.2 μm was extracted by repeated centrifugation and decantation. As a result, clay samples used in the experiments have a high mineralogical purity of 95% (in the case of kaolinite and illite) and 50% (in the case of smectite). Pretreated clays were submerged in one of four different boron-containing artificial seawater solutions. These seawater solutions were prepared by mixing trace element-grade salts with ultrapure water according to the recipe of Millero (2013). Specifically, the amounts of added MgCl2, CaCl2, Na2SO4 and NaHCO3 were varied to produce four different seawater stock solutions that have (i) a major ion concentration similar to Eocene seawater; (ii) a major ion concentration similar to Cretaceous seawater; (iii) a DIC concentration half as high as in modern seawater; (iv) a DIC concentration twice as high as in modern seawater. Clay and seawater were allowed to interact for 48h through continuous agitation, after which solution samples were extracted.

Experimental adsorption parameters of boron isotopes on clay minerals

Adsorption and isotopic fractionation of boron on clastic sediment is one process responsible for the heavy boron isotopic composition of the modern ocean. However, the mechanism by which boron complexes to the surface of clay minerals and the cause of its isotopic fractionation are still unclear. We performed two sets of experiments, using solutions of pure water with added boron and seawater, to explore the isotope behavior during adsorption of boron onto kaolinite, smectite and illite. The dataset consists of an excel file with four sheets that store (1) the NIST RM 803 measurements we used to establish the long-term reproducibility of our isotope measurements, (2) results of our pure experiment, (3) results of our seawater experiments and (4) a global compilation of XRD-based riverine clay mineral assemblages.

1