API src

Found 1449 results.

Similar terms

s/cartographie/Kartographie/gi

Entwicklung eines Copernicus-Dienstes zur Erstellung konsistenter Daten für die Waldfläche Deutschlands, Teilvorhaben: Datenmanagement

Entwicklung eines Copernicus-Dienstes zur Erstellung konsistenter Daten für die Waldfläche Deutschlands, Teilvorhaben: Anforderungsanalysen

Entwicklung eines Copernicus-Dienstes zur Erstellung konsistenter Daten für die Waldfläche Deutschlands, Teilvorhaben: Funktionstests NW-FVA

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Genetic Dissection of Flowering Time in Wheat by High-density Genome-wide Association Mapping

Wheat (Triticum aestivum L.) is grown worldwide and is one of the most important crops for human nutrition. Einkorn wheat (Triticum monococcum) is a diploid relative of bread wheat and both have the A genome in common. The timing of flowering is of major importance for plants to optimally adjust their life cycle to diverse environments. QTL mapping studies indicated that flowering time in cereals is a complex trait, which is controlled by three different pathways: vernalization, photoperiod and earliness per se. In wheat, high-resolution genome-wide association mapping is now possible, because of the availability of a high density molecular marker chip. The main goal of the proposed project is to investigate the regulation of flowering time in wheat using a genome-wide association mapping approach based on a novel high-density SNP array. In particular, the project aims to (1) investigate the phenotypic variation of flowering time of bread wheat and Einkorn wheat in response to environmental cues in multilocation field trials, (2) study the effects of Ppd alleles on flowering time in a candidate 3 gene approach, (3) determine the genetic architecture of flowering time in a high-density genome-wide association mapping, and (4) investigate the plasticity of the genetic architecture of flowering time in wheat by a comparison between bread wheat and Einkorn wheat.

Entwicklung eines Copernicus-Dienstes zur Erstellung konsistenter Daten für die Waldfläche Deutschlands, Teilvorhaben: Datenanalyse, HAWK Hildesheim

ForestFireFighting TransferLaboratory - ein Reallabor zur Effizienzsteigerung der Waldbrandbekämpfung durch einen verbesserten Innovations- und Wissenstransfer zwischen Wehr und Wald, TP2: Integration, Sensibilisierung Feuerwehr

Analyse und Nowcasting von konvektiven Systemen mit VERA

Die genaue Vorhersage von Gewittern ist sowohl für die Wissenschaft als auch für die Öffentlichkeit ein wichtiges Anliegen, da konvektive Ereignisse im Sommer zu den größten Naturgefahren in unseren Breiten gehören. Um die Entstehungsprozesse von Gewittern genauer zu verstehen, ist eine Untersuchung von Konvektion auf einer hoch auflösenden Skala nötig. Nur damit kann man den heutigen Anforderungen an die Vorhersage (in Bezug auf Zeit, Raum und Intensität) gerecht werden. Zu diesem Zweck wird im nächsten Jahr im Rahmen von zwei internationalen Projekten (COPS und MAP D-PHASE) im Süden von Deutschland eine groß angelegte Messkampagne durchgeführt. Das Hauptziel dieser Kampagne ist die Erstellung eines hochwertigen Datensatzes für die Untersuchung konvektiver Prozesse, von der Auslösung von Konvektion über die Wolken- und Niederschlagsbildung bis hin zur Untersuchung von Wolkenchemie und Hydrometeoren. Damit sollen meteorologische (und hydrologische) Vorhersagen für konvektive Ereignisse verbessert werden. Sowohl bei COPS (Convective and Orographically-induced Precipitation Study; Teil des Priority Program SSP 1167 der Deutschen Forschungsgemeinschaft) als auch bei MAP D-PHASE (Mesoscale Alpine Program Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region, ein von der Welt-Meteorologischen Organisation gefördertes Projekt) ist das Institut für Meteorologie und Geophysik in der Planungsphase vertreten. Im Rahmen des vorgeschlagenen Projektes soll die Messkampagne durch den Einsatz eines eigenen Meso-Messnetzes und Personal unterstützt werden, womit ein wichtiger Beitrag zu dem einmaligen Datensatz, der durch den Einsatz verschiedenster Messsysteme (Bodenstationen, Dopplerradar, Lidar, Satelliten, Flugzeuge, Radiosonden, ...) zu Stande kommt, geleistet wird. Mit Hilfe der Daten aus der Feldkampagne soll im Zuge des Projektes das Analyseverfahren VERA, das im Rahmen von FWF-Projekten am Institut entwickelt worden ist, einerseits für das Nowcasting von Gewittern, andererseits zur genaueren Niederschlagsanalyse, weiterentwickelt werden. Für beide Entwicklungsschritte wird dem Fingerprint-Ansatz, mit dem Zusatzinformation für das Downscaling meteorologischer Felder in die VERA-Analyse implementiert werden kann, eine wichtige Rolle zukommen. Dieser Ansatz wird für 3 Dimensionen, mehrere Fingerprints und höhere Auflösungen (bis 1km Gitterdistanz) erweitert. Mittels des Datensatzes werden neue Fingerprints entwickelt, die dazu beitragen werden, die Analysegenauigkeit für den Niederschlag und die Vorhersagbarkeit von Gewittern in Echtzeit mit Routinedaten zu verbessern. Das fertig entwickelte Analyseverfahren soll dann in einem weiteren Schritt zur Echtzeit-Validierung von hoch auflösenden Wettermodellen verwendet werden, wobei ein neuer Ansatz des Vergleiches zum Tragen kommt. Auch dadurch wird ein Beitrag zur besseren Vorhersagbarkeit von Gewittern geleistet.

Starkregenhinweiskarte

Die Starkregenhinweiskarte weist auf die potentielle Gefährdung durch Überflutung und auf dokumentierte Starkregenereignisse hin. Die Starkregenhinweiskarte stellt die Ergebnisse der Hinweiskarte Starkregengefahren des Bundesamt für Kartographie, der topografischen Senkenanalyse der Berliner Wasserbetriebe und die starkregenbedingten Feuerwehreinsätze der Berliner Feuerwehr für das Land Berlin dar. Die Karte enthält jeweils die flächenhafte Aussagen zum Wasserstand, zur Fließgeschwindigkeit/-richtung für das außergewöhnliche und das extreme Ereignis und zur Ausdehnungen der Senken. Die starkregenbedingte Feuerwehreinsatzdaten werden sowohl punktuell (ab Maßstab 1:25.000) als auch aggregiert auf Basis von Blockteil- und Straßenflächen (ISU5 2021) dargestellt. Darüber hinaus werden Gebiete dargestellt, für die basierend auf gekoppelten 1D-Kanalnetz-/2D-Oberflächenabflusssimulation detaillierte Starkregengefahrenkarten vorhanden sind. Diese Informationen werden mit der Hochwassergefahrenkarte für Hochwasser mit niedriger Wahrscheinlichkeit und der Gewässerkarte überlagert. Alle Informationen erfolgen ohne Gewähr für ihre Richtigkeit. In keinem Fall wird für Schäden, die sich aus der Verwendung abgerufener Informationen ergeben, Haftung übernommen.

Verbesserte geodätische Gletschermassenbilanzen durch Integration von Fernerkundung, Oberflächenmassenbilanz und Firnverdichtungsmodellierung - eine Beispielstudie von James Ross Island, Antarktis

Das Vorhaben zielt auf die Verbesserung von geodätischen Gletschermassenbilanzen ab. Neben einer Verbesserung der absoluten Genauigkeit wird vor allem auch eine verbesserte Fehlerquantifizierung/-abschätzung angestrebt. Zunächst werden Höhen- und Volumenänderungen aus der Differenzierung von digitalen Geländemodellen unterschiedlicher Zeitpunkte und Quellen bestimmt. Diese werden durch verschieden Verfahren wie Photogrammetrie und SAR Interferometrie (insbesondere der deutschen TanDEM-X Mission) gewonnen. Die derzeitigen Schwierigkeiten der geodätischen Methode resultieren vor allem aus Unsicherheiten der Eindringtiefe des Radarsignals bei trockenem Schnee bzw. gefrorener Schneedecke sowie bei der anschließenden Konvertierung von Volumen- in Massenänderungen, durch die Annahme eines Dichtewertes oder Dichteprofils. Hier soll durch den Einsatz eines gekoppelten Gletschermassenhaushalt- und Firnkompaktionsmodell zusammen mit den Fernerkundungsergebnisse eine entscheidende Verbesserung erzielt werden. Um das Modell und die Untersuchungen zu initialisieren und zu validieren, sollen Felderhebungen durchgeführt werden sowie auf einen sehr umfangreichen Datenbestand des Antragstellers und der tschechischen und argentinischen Kooperationspartner zurückgegriffen werden. Um Effekte und mögliche Fehler durch das Eindringen des x-Band Radarsignals besser quantifizieren zu können, werden Aufnahmen mit Sommer und Wintersituationen untersucht und mit GNSS Referenzdaten aus Geländeerhebungen verifiziert. Ferner werden die Ergebnisse der geodätischen Methode mit dem sogenannten Input-Output Verfahren ('flux gate approach') verglichen, um eine zusätzliche Absicherung der Ergebnisse zu erzielen. Das Projekt wird in enger Kooperation mit tschechischen Wissenschaftlern der Universitäten in Brno und Prag sowie mit Kollegen des Argentinischen Antarktisinstituts durchgeführt. Als Testgebiet wurde James Ross Island, an der nordöstlichen Spitze der Antarktischen Halbinsel, ausgewählt. Auch wenn die Untersuchungsregion in der Antarktis liegt, so sollen primär methodische Entwicklungen durchgeführt werden, die auf andere Standorte übertragbar sind. Der vorgeschlagene Standort bietet aufgrund der vorhanden Datenlage und Vorarbeiten sowie der internationalen Kooperation und logistischen Möglichkeiten ideale Voraussetzungen, die zu keinen nennenswerten Mehrkosten gegenüber anderen Standorten mit vergleichbaren Gletschergrößen führen. Zudem zeigen Vorarbeiten, dass die beobachteten Höhenänderungen der Gletscher auf einem kleinen Gebiet sehr unterschiedlich sind und daher in einem Gebiet unterschiedliche Magnituden, Richtungen und Mechanismen der Änderungen sowie unterschiedliche meteorologische Bedingungen untersucht werden können. Eine Situation und Konstellation, die an kaum einem anderen Standort derart gut vorliegt.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt C04: Verständnis der räumlichen und zeitlichen Dynamik der Vegetation in Wetscapes 2.0 durch Multisensor-Erdbeobachtungszeitreihen-Daten

Wir werden mit Hilfe von Erdbeobachtungsdaten räumlich kontinuierliche Karten erstellen, die (1) einen höheren Grad an thematischer Detailliertheit aufweisen als herkömmliche Karten, (2) die Vegetationsbedeckung jährlich (Artenbedeckung) und im Jahresverlauf quantifizieren und (3) zur Extrapolation von Biomasseschätzungen beitragen. Diese Daten werden verwendet, um die Auswirkungen der Wiedervernässung auf die Vegetationsbedeckung zu analysieren und die festgestellten Prozesse in Raum und/oder Zeit zu beschreiben oder aufzuschlüsseln.

1 2 3 4 5143 144 145