Das Gesamtziel des Vorhabens ist es, die Korrelation zwischen strukturellen und chemischen Eigenschaften der CIGS-Absorber und des pn-Übergangs auf Basis von experimentellen Ergebnissen zu verstehen. Daher wird das Projekt in zwei Teile unterteilt. Im ersten Teil geht es darum, die chemischen und strukturellen Eigenschaften der Ga oder S-reiche Absorber für verschiedene Verarbeitungsparameter zu verstehen. Im zweiten Teil geht es darum, die chemischen und strukturellen Eigenschaften für verschiedene p-n-Übergänge zu verstehen.
Ziel des geplanten Verbundprojekts ist es, die Wissensbasis für die halbleitenden Funktionsschichten einer Cu(In,Ga)Se2 bzw. Cu(In,Ga)(S,Se)2 (CIGS)-Solarzelle zu erhöhen und dieses Wissen für die weitere Steigerung des Wirkungsgrads von Zellen und Modulen zu nutzen. Wirkungsgrad und Stabilität/Metastabilität werden durch die physikalischen Eigenschaften der Funktionsschichten und Grenzflächen bestimmt. Hier ist insbesondere der oberflächennahe Bereich des CIGS-Absorbers von Bedeutung. Auf diesen Bereich fokussiert das Projekt der deutschen Spitzenforschung mit der Verzahnung von Analyse, Modellierung und Optimierung. Dieses Zusammenspiel schafft die Voraussetzung für noch höhere Wirkungsgrade (geringere Kosten) und bessere Stabilität der CIGS-Technologie in Laborsolarzellen bzw. -modulen und somit auch im industriell hergestellten Modul.
Ziel des Vorhabens ist es, eine deutliche Effizienzsteigerung von CIGS-basierten Dünnschicht-Solarmodulen zu erreichen. Diese Steigerung soll durch Verbesserung der Absorberschicht, der Pufferschicht sowie der Grenzschicht zwischen diesen beiden Schichten erreicht werden. Durch den Verbund der Projektpartner stehen in optimalster Weise Kapazitäten für Analytik, Prozessierung und Simulation zur Verfügung. Im Zusammenspiel von Analytik an Einzelschichten und ihren Grenzschichten einerseits und elektro-optischer Simulation andererseits wird ein Modell erarbeitet, mit dessen Hilfe weitere Effizienzsteigerungspotentiale dargelegt werden sollen. Die so gefundenen Steigerungspotentiale werden dann in der Prozessierung umgesetzt und sollen zu einem Solarmodul mit einer Effizienz von größer 20 % (Aperturwirkungsgrad) führen. Dieser Wert liegt mehr als 2 % über dem aktuellen Weltbestwert für CIGS-basierte Dünnschicht Solarmodule.
Das Vorhaben soll die Wissensbasis zu den Funktionsschichten von Cu(In,Ga)(S,Se)2- (CIGS-) Solarzellen erhöhen, um den Projektpartnern bzw. der deutschen Industrie eine weitere Steigerung der Wirkungsgrade zu ermöglichen. Hierfür ist ein detailliertes Verständnis der physikalischen Eigenschaften und Verlustmechanismen in den Funktionsschichten nötig. Aufgabe des KIT ist es deshalb, die spektroskopischen, chemischen und mikrostrukturellen Eigenschaften der Absorber- und Pufferschichten zu analysieren, mit dem Ziel, den Einfluss der Herstellungsparameter und des Zelldesigns auf die Verlustmechanismen zu identifizieren und durch Rückkopplung an die Hersteller eine weitere Optimierung zu ermöglichen. Hierzu wird die Expertise von drei Gruppen am KIT vereint: KIT-LTI widmet sich der Analyse der Absorber- und Puffereigenschaften mittels optischer Spektroskopie, um Aussagen über die elektronischen Eigenschaften und Verlustmechanismen zu treffen, aber auch der Kelvinsonden-Rasterkraftmikroskopie (KPFM), die ein vertieftes Verständnis der elektrischen Eigenschaften ermöglicht. Die Ergebnisse werden mit strukturellen und chemischen Analysen mittels elektronenmikroskopischer Methoden am KIT-LEM bzw. röntgen- und elektronenspektroskopischen Methoden am KIT-ITCP korreliert, um eine umfassende Evaluation der Auswirkungen der Probenstruktur und Prozessparameter auf die resultierenden Schicht- und Bauelement-Eigenschaften und damit eine weitere Optimierung zu ermöglichen.
Ziel des geplanten Verbundprojekts ist es, die Wissensbasis für die halbleitenden Funktionsschichten einer Cu(In,Ga)Se2 bzw. Cu(In,Ga)(S,Se)2 (CIGS)-Solarzelle zu erhöhen und dieses Wissen für die weitere Steigerung des Wirkungsgrads von Zellen und Modulen zu nutzen. Mit Hilfe von neuester in situ Diagnostik, modernsten, hoch orts- und zeitaufgelösten Charakterisierungsmethoden sowie mittels Simulationen und ab initio Modellierung sollen die Funktionsschichten und Solarzellen analysiert werden, um diese Erkenntnisse in die Verbesserung der Funktionsschichten und Grenzflächen einfließen zu lassen. Instrumente der Wirkungsgraderhöhung sind: Erhöhung der Bandlücken und Optimierung des Bandlückenverlaufs, Optimierung des Bereichs am pn-Übergang und Grenzflächenanpassung. Dabei soll die Bandlückenenergie der CIGS-Funktionsschicht (Absorber) graduell erhöht werden, um die Leerlaufspannung zu steigern, die Bandlücke der Pufferschicht erhöht werden, um die Stromausbeute zu erhöhen und die Leitungsbandkante der Fensterschichten modifiziert werden, um die Bandanpassung zu verbessern.
Übergreifendes Ziel des Verbundprojekts ist es ein vertieftes Verständnis der Halbleitereigenschaften von chalkopyritbasierten Dünnschichtsolarzellen zu generieren, die mittels industriell relevanter Ko-Verdampfungs- und sequentieller Prozesse hergestellt werden. Die Zusammenführung von Themen zu Absorber und pn-Übergang gewährleistet die Verbesserung von Material- und Grenzflächeneigenschaften der Funktionsschichten und trägt somit zur Erhöhung von Effizienz und Langzeitstabilität der Solarzelle bei. Die Rolle des ZSW im Verbund beinhaltet neben der Koordination des Gesamtprojekts auch die Entwicklung und Charakterisierung eines neuen Indium-dominierten Grenzflächendesigns. Das Projekt soll dazu beitragen, die Wettbewerbsfähigkeit der deutschen CIGS-Industrie (Modulhersteller und dazugehörige Maschinenbauer) zu internationalen Konkurrenten und zur dominierenden Si-Technologie zu stärken.
Das Vorhaben hat zum Ziel, die Wettbewerbsfähigkeit der deutschen CIGS-Solarindustrie, d. h. Modulhersteller, aber auch der dazugehörige Maschinenbau, zu internationalen Konkurrenten und zur dominierenden Si-Solartechnologie zu gewährleisten. Hierfür ist ein vertieftes Verständnis der Halbleitereigenschaften von CIGS-Dünnschichtsolarmodulen, hergestellt mittels industriell relevanter Ko-Verdampfungs- und sequentieller Prozesse, nötig. Das Ziel des hier beantragten Teilvorhabens besteht darin, den Einfluss der Prozessparameter während des Absorberschichtwachstums auf chemische Gradienten und Bildung von strukturellen Defekten sowie deren Auswirkungen auf die optoelektronischen Eigenschaften und Solarzellenwirkungsgrade zu bestimmen. Auf Grundlage dieser Erkenntnisse sollen in Zusammenarbeit mit den Verbundpartnern gezielte Prozessoptimierungen ermöglicht werden, die zu einer Steigerung der maximalen Wirkungsgrade führen.
Das Ziel des Vorhabens ist die Optimierung und Weiterentwicklung von industrierelevanten in-line Selenisierungs- und Sulfurisierungprozessen und Anlagen für die schnelle (atmosphärische) Cu(In,Ga)(S,Se)2 (CIGSSe)* Deposition für hocheffiziente Solarzellen. Der Fokus liegt dabei auf der Kostenreduktion durch die Verwendung kostengünstiger, bei atmosphärischem Druck betriebenen, Anlagen, als auch der Verwendung von nicht-toxischen Materialien und einer Steigerung der Materialausbeute (reduziertem CAPEX und OPEX). Gleichzeitig wird eine Verbesserung der Wirkungsgrade der entsprechenden Solarzellen angestrebt. MBE-Komponenten entwickelt in diesem Rahmen eine Se-Quelle mit Plasma Cracker Einheit, die neuartige, effizientere Prozessführungen ermöglichen soll. *Cu: Kupfer; In: Indium; Ga: Gallium; S: Schwefel; Se: Selen Im Projekt wird eine Se-Quelle mit Plasma Cracker Einheit konzeptioniert, aufgebaut und getestet. Dazu werden verschiedene Quellenkomponenten neu entwickelt und bestehende Baugruppen weiter optimiert. Zur Untersuchung von Selenisierungsprozessen mit plasmaaktivierten Selen wird vom HZB/PVComB eine Testanlage aufgebaut. MBE-Komponenten wird das Helmholtz-Zentrum Berlin maßgeblich bei der Konzeption und Spezifikation der Anlage unterstützen insbesondere um eine Kompatibilität zur Se-Quelle zu gewährleisten.
Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.
Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.
Origin | Count |
---|---|
Bund | 17 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 17 |
unbekannt | 1 |
License | Count |
---|---|
offen | 18 |
Language | Count |
---|---|
Deutsch | 17 |
Englisch | 1 |
Resource type | Count |
---|---|
Keine | 3 |
Webseite | 15 |
Topic | Count |
---|---|
Boden | 8 |
Lebewesen und Lebensräume | 4 |
Luft | 11 |
Mensch und Umwelt | 18 |
Wasser | 5 |
Weitere | 18 |