API src

Found 18 results.

TAPAS - F&E zur GIGS-Technologie: Weiterentwicklung der Anlagentechnik für die Produktion, gezielte Material- und Prozessoptimierungen zur Verbesserung der Produktqualität für die weitere Reduzierung der Stromgestehungskosten (LCoE), Teilvorhaben: Material- und Prozessoptimierung, Kosten

Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.

Copper isotope fractionation during prehistoric smelting of copper sulfides: experimental and analytical data

The project from which the data derived aimed to establish the first systematic study of Cu isotope fractionation during the prehistoric smelting and refining process. For this reason, an experimental approach was used to smelt sulfide copper ore according to reconstructed prehistoric smelting models. The ore was collected by E. Hanning as part of her PhD thesis work from a Bronze Age mining site, the Mitterberg region, Austria (Hanning and Pils 2011) and was made available for the experiments.All starting materials for the experiments such as the natural ore, roasted ore, construction clay, flux, dung (used for the roasting), wood and charcoal (fuel) were natural materials. All firing conditions including the amount of fuel or charging material and the temperatures in the furnaces were recorded, and the experimental procedures were documented in the very detail. In total, 30 experiments were carried out in 4 experimental series. The smelting products, both intermediate products and final products were sampled during or after the respective experiment. Slag, matte and copper metal were the major smelting products. All other materials used in and produced by the experiments were sampled, too. Materials used and produced in the two most promising experimental series with regard to potential Cu isotope fractionation were analyzed. Based on the analytical results, the potential of Cu isotopes as a tool in archaeometallurgical research was systematically evaluated and consequences for the copper isotope application as a provenance tool in archaeometry were identified.The data include the documentation of the experiments, laboratory procedures and analytical methods. An experimental outline was previously published in Rose et al. (2019). Analytical methods applied were ICP-MS (elemental analysis, 80 samples), MC-ICP-MS (copper isotopes, 98 samples), and XRD (phase analysis, 25 samples). The experiments were carried out at the Römisch-Germanisches Zentralmuseum, Labor für Experimentelle Archäologie, Mayen, Germany. Laboratories used for the analytical part of the project were the research laboratories at the Deutsches Bergbau-Museum Bochum and FIERCE (Frankfurt Isotope and Element Research Center), Goethe-University Frankfurt, both Germany. Data were processed and plots created with R (R Core Team 2019) in RStudio®. Data are provided as data tables or text files, the R scripts used to create the time-temperature plots of the smelting experiments are also included.The full description of the data and methods is provided in the data description file.

EFFCIS - Hocheffiziente Cu(In,Ga)Se2- bzw. Cu(In,Ga)(S,Se)2-Dünnschichtsolarzellen und -module durch Verbesserung der Funktionsschichten und Verwendung von alternativen Puffermaterialien - Effizienzoptimierung von CIS-basierten Dünnschichtsolarzellen und -modulen, Teilvorhaben: Das Verständnis von der Verbindung zwischen Struktur und Chemie an der CdS/CIGS-Grenzfläche durch korrelative Mikroskopie

Das Gesamtziel des Vorhabens ist es, die Korrelation zwischen strukturellen und chemischen Eigenschaften der CIGS-Absorber und des pn-Übergangs auf Basis von experimentellen Ergebnissen zu verstehen. Daher wird das Projekt in zwei Teile unterteilt. Im ersten Teil geht es darum, die chemischen und strukturellen Eigenschaften der Ga oder S-reiche Absorber für verschiedene Verarbeitungsparameter zu verstehen. Im zweiten Teil geht es darum, die chemischen und strukturellen Eigenschaften für verschiedene p-n-Übergänge zu verstehen.

TAPAS - F&E zur GIGS-Technologie: Weiterentwicklung der Anlagentechnik für die Produktion, gezielte Material- und Prozessoptimierungen zur Verbesserung der Produktqualität für die weitere Reduzierung der Stromgestehungskosten (LCoE), Teilvorhaben: Weiterentwicklung der Anlagentechnik

Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.

EFFCIS - Hocheffiziente Cu(In,Ga)Se2- bzw. Cu(In,Ga)(S,Se)2-Dünnschichtsolarzellen und -module durch Verbesserung der Funktionsschichten und Verwendung von alternativen Puffermaterialien - Effizienzoptimierung von CIS-basierten Dünnschichtsolarzellen und -modulen, Teilvorhaben: Spektroskopische, chemische und mikrostrukturelle Analyse von Absorber- und alternativen Pufferschichten

Das Vorhaben soll die Wissensbasis zu den Funktionsschichten von Cu(In,Ga)(S,Se)2- (CIGS-) Solarzellen erhöhen, um den Projektpartnern bzw. der deutschen Industrie eine weitere Steigerung der Wirkungsgrade zu ermöglichen. Hierfür ist ein detailliertes Verständnis der physikalischen Eigenschaften und Verlustmechanismen in den Funktionsschichten nötig. Aufgabe des KIT ist es deshalb, die spektroskopischen, chemischen und mikrostrukturellen Eigenschaften der Absorber- und Pufferschichten zu analysieren, mit dem Ziel, den Einfluss der Herstellungsparameter und des Zelldesigns auf die Verlustmechanismen zu identifizieren und durch Rückkopplung an die Hersteller eine weitere Optimierung zu ermöglichen. Hierzu wird die Expertise von drei Gruppen am KIT vereint: KIT-LTI widmet sich der Analyse der Absorber- und Puffereigenschaften mittels optischer Spektroskopie, um Aussagen über die elektronischen Eigenschaften und Verlustmechanismen zu treffen, aber auch der Kelvinsonden-Rasterkraftmikroskopie (KPFM), die ein vertieftes Verständnis der elektrischen Eigenschaften ermöglicht. Die Ergebnisse werden mit strukturellen und chemischen Analysen mittels elektronenmikroskopischer Methoden am KIT-LEM bzw. röntgen- und elektronenspektroskopischen Methoden am KIT-ITCP korreliert, um eine umfassende Evaluation der Auswirkungen der Probenstruktur und Prozessparameter auf die resultierenden Schicht- und Bauelement-Eigenschaften und damit eine weitere Optimierung zu ermöglichen.

EFFCIS - Hocheffiziente Cu(In,Ga)Se2- bzw. Cu(In,Ga)(S,Se)2-Dünnschichtsolarzellen und -module durch Verbesserung der Funktionsschichten und Verwendung von alternativen Puffermaterialien - Effizienzoptimierung von CIS-basierten Dünnschichtsolarzellen und -modulen, Teilvorhaben: Entwicklung und Charakterisierung neuartiger Grenzflächendesigns für hocheffiziente Cu(ln,Ga)Se2-Solarzellen

Übergreifendes Ziel des Verbundprojekts ist es ein vertieftes Verständnis der Halbleitereigenschaften von chalkopyritbasierten Dünnschichtsolarzellen zu generieren, die mittels industriell relevanter Ko-Verdampfungs- und sequentieller Prozesse hergestellt werden. Die Zusammenführung von Themen zu Absorber und pn-Übergang gewährleistet die Verbesserung von Material- und Grenzflächeneigenschaften der Funktionsschichten und trägt somit zur Erhöhung von Effizienz und Langzeitstabilität der Solarzelle bei. Die Rolle des ZSW im Verbund beinhaltet neben der Koordination des Gesamtprojekts auch die Entwicklung und Charakterisierung eines neuen Indium-dominierten Grenzflächendesigns. Das Projekt soll dazu beitragen, die Wettbewerbsfähigkeit der deutschen CIGS-Industrie (Modulhersteller und dazugehörige Maschinenbauer) zu internationalen Konkurrenten und zur dominierenden Si-Technologie zu stärken.

ACCESS-CIGS - Optimierung und Weiterentwicklung von industriellen Selenisierungs- und Sulfurisierungsprozessen für CIGS, Teilvorhaben: Optimierung der Se-Versorgung bei der sequentiellen Herstellung von CIGSSe Dünnschichten

In diesem Teilvorhaben wird angestrebt, die Herstellungskosten von Cu(In,Ga)(Se,S)2 basierten Solarzellen bei gleichzeitiger Verbesserung der Wirkungsgrade zu reduzieren. Ausgangspunkt ist ein industrierelevanter atmosphärischer Selenisierungs- und Sulphurisierungsprozess zur schnellen Deposition von Cu(In,Ga)(S,Se)2 (CIGSSe)* Schichten aus metallischen Vorläuferschichten. Die beiden Hauptziele sind: 1.) Entwicklung einer geeigneten thermischen bzw. plasmaunterstützten Aktivierung des während der thermischen Prozessierung von Cu-In-Ga Vorläuferschichten angebotenen Selens, sowie die Erforschung der Auswirkungen auf den Prozess. 2.) Test und Evaluation einer Anlage zur Rückführung von während der thermischen Prozessierung überschüssig angebotenem Selen. *Cu: Kupfer; In: Indium; Ga: Gallium; S: Schwefel; Se: Selen. Das Vorhaben ist in 5 Arbeitspakete (AP) gegliedert. AP1 beinhaltet die Herstellung geeigneter Glas/Mo/Cu-In-Ga Vorläuferschichtstapel mit Elektrodeposition und Magnetron-Sputtern für die sequentielle Prozessierung zu Cu(In,Ga)Se2 Absorberschichten. In AP2 wird eine Anlage für die thermische Aktivierung von Se in eine in-line Anlage des Helmholtz-Zentrum Berlin (HZB) eingebaut, getestet und erforscht. Eine weitere separate Anlage für die thermische Prozessierung mittels plasmaunterstützt aktivierten Selens, inkl. integrierter optischer Kontrolle der Aktivierung wird entwickelt, aufgebaut und studiert. AP3 beinhaltet die Erforschung einer gezielten Einbringung von Schwefel in die Cu(In,Ga)Se2 Oberfläche zur Wirkungsgradsteigerung. In AP4 wird eine bereits entwickelte Selenrückführungsanlage in die bestehende in-line Anlage am HZB eingebaut und evaluiert. AP5 hat zum Ziel geeignete CdS und Zn(O,S) Puffer- und ZnO Fensterschichten für die Fertigstellung von Solarzellen und Solarmodulen abzuscheiden. Zentraler Punkt ist die Untersuchung der optoelektronischen Eigenschaften der Bauteile, diese zu evaluieren und mit Prozessierungsparametern zu verknüpfen.

ACCESS-CIGS - Optimierung und Weiterentwicklung von industriellen Selenisierungs- und Sulfurisierungsprozessen für CIGS, Teilvorhaben: Selenisierung mittels plasmaaktivierten Selens

Das Ziel des Vorhabens ist die Optimierung und Weiterentwicklung von industrierelevanten in-line Selenisierungs- und Sulfurisierungprozessen und Anlagen für die schnelle (atmosphärische) Cu(In,Ga)(S,Se)2 (CIGSSe)* Deposition für hocheffiziente Solarzellen. Der Fokus liegt dabei auf der Kostenreduktion durch die Verwendung kostengünstiger, bei atmosphärischem Druck betriebenen, Anlagen, als auch der Verwendung von nicht-toxischen Materialien und einer Steigerung der Materialausbeute (reduziertem CAPEX und OPEX). Gleichzeitig wird eine Verbesserung der Wirkungsgrade der entsprechenden Solarzellen angestrebt. MBE-Komponenten entwickelt in diesem Rahmen eine Se-Quelle mit Plasma Cracker Einheit, die neuartige, effizientere Prozessführungen ermöglichen soll. *Cu: Kupfer; In: Indium; Ga: Gallium; S: Schwefel; Se: Selen Im Projekt wird eine Se-Quelle mit Plasma Cracker Einheit konzeptioniert, aufgebaut und getestet. Dazu werden verschiedene Quellenkomponenten neu entwickelt und bestehende Baugruppen weiter optimiert. Zur Untersuchung von Selenisierungsprozessen mit plasmaaktivierten Selen wird vom HZB/PVComB eine Testanlage aufgebaut. MBE-Komponenten wird das Helmholtz-Zentrum Berlin maßgeblich bei der Konzeption und Spezifikation der Anlage unterstützen insbesondere um eine Kompatibilität zur Se-Quelle zu gewährleisten.

MYCIGS - Energieertragsoptimierte Cu(In,Ga)(S,Se)2-Dünnschichtsolarmodule durch gezielte Steuerung der Ertragsparameter, Teilvorhaben: Ertragsoptimierung für CIGSSe aus Durchlaufofen

Spezifisch für die CIGS-Technologie soll im Verbundvorhaben eine gezielte Verbesserung der CIGS Absorberbildung mittels industrierelevanter Prozesse, sowie der Wechselwirkungen des Absorbers mit den weiteren Schichten für verbesserte Ertragsparameter im Vordergrund stehen. Weiterhin soll gezielt für CIGS Module eine verbesserte Abbildung des Ertrags in Prognose und Messung erreicht werden. Insbesondere die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit oder Defektdichte im Bauteil wird erstmals untersucht. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Identifizierte Absorber werden zu geeigneten Testmodulen fertiggestellt, die dann in Freifeldanlagen installiert und getestet werden, auch zur Nachstellung gebäudeintegrierter Photovoltaik (BIPV). Als Ergebnis soll eine deutliche Verbesserung der Ertragsparameter der Solarmodule mit industriell umsetzbaren Prozessen gezeigt werden.

MYCIGS - Energieertragsoptimierte Cu(In,Ga)(S,Se)2-Dünnschichtsolarmodule durch gezielte Steuerung der Ertragsparameter, Teilvorhaben: Materialwissenschaftliche Charakterisierung

Das Verbundvorhaben befasst sich mit der gezielten Verbesserung der Ertragsparameter bei der CIGS Absorberbildung mittels industrierelevanter Prozesse. Untersucht wird die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit und Defektdichte im Halbleiter und an den Grenzflächen und die Wechselwirkungen des Absorbers mit den weiteren Schichten. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Im Teilvorhaben der FAU erfolgt die materialwissenschaftliche Charakterisierung der Bauteile. Beteiligt sind der Lehrstuhl für Kristallographie und Strukturphysik (Prof. Hock) und das Kristallzüchtungslabor am Department Werkstoffwissenschaften 6 (Prof. Wellmann). An beiden Institutionen erfolgt eine umfassende Charakterisierung von der Oberseite der Absorber (mit und ohne Pufferschichten), von der Unterseite der vom Rückkontakt abgelösten Absorber und an der Oberseite des freigelegten Rückkontaktes. Der Querschnitt der Absorber ist in der Rasterelektronenmikrokopie zugänglich. Alle Ergebnisse der Charakterisierung werden den Prozessparametern bei der Schichtherstellung und den Ertragsparametern zugeordnet. Bei der Charakterisierung mittels Rasterelektronenmikroskopie (REM) werden der Schichtaufbau der Solarzelle, das mikrokristalline Gefüge des Absorbers und des Rückkontaktes, die Grenzfläche zwischen ihnen und die Oberflächenrauigkeit und Poren erfasst. Die im REM integrierten Detektoren für energiedispersive Röntgenfluoreszenzanalyse (EDX) und Kathodolumineszenz erlauben es, die chemische Zusammensetzung des Absorbers tiefenabhängig (Gradienten der Bandlücke) und über die Fläche (Inhomogenitäten der Bandlücke) qualitativ und quantitativ zu bestimmen und Fremdphasen zu erkennen. Räumlich und spektral aufgelöste Photolumineszenzmessungen dienen der Bestimmung der Bandlücke und ergänzen die EDX-Messungen. Neben den Eigenschaften von Absorber und Rückkontakt werden auch die Bereiche nahe den P1 Laserlinien auf Veränderungen und Beschädigungen untersucht. Die kristallografisch-strukturellen Eigenschaften der Schichten werden mittels Röntgenbeugungsmethoden untersucht. Dies umfasst die röntgenographische Phasenanalyse, die Verfeinerung der Strukturparameter der kristallinen Phasen, Messungen unter streifendem Einfall sowie Eigenspannungsmessungen und Messungen von Vorzugsorientierungen der Kristallite (Textur) an den Schichten. Durch den streifenden Einfall kann die Tiefenabhängigkeit der Elementverteilung im Absorber bestimmt werden. Eigenspannungsmessungen und Messungen der Textur sind besonders für die Eigenschaften der Rückelektrode wichtige Materialparameter.

1 2