Eine der wissenschaftlichen Herausforderungen unserer Zeit ist ein besseres Verständnis des Klimas auf der Erde. Zum Beispiel sind der Einfluß einer 'variablen' Sonne und die Wechselwirkungen in großen Bereichen unserer Erde (Atmosphäre, Biosphäre, Ozean, Land) noch weitgehend offene Fragestellungen. Zum besseren Verständnis dieser Prozesse, welches für zuverläßliche Klimamodelle unumgänglich ist, bedarf es vor allem einer umfassenden Datenerhebung. Hierbei gewinnen in jüngster Zeit die Messungen von kosmogenen Radionukliden mit Hilfe der ultra-sensitiven Nachweismethode der Beschleunigermassenspektrometrie eine immer größere Bedeutung. Wir beabsichtigen, die Liste der für die Atmosphären- und Klimaforschung bereits verwendeten kosmogenen Radionuklide (Be-10, C-14, Cl-36), um das bisher kaum erforschte Isotop Al-26 (Halbwertszeit = 0.72 Millionen Jahre) zu erweitern. Wir erwarten dadurch einen Beitrag zum besseres Verständnis von Klimaprozessen. Insbesondere bietet sich eine Kombination von Al-26 mit Be-10 (Halbwertszeit = 1.5 Millionen Jahre) zur Datierung alter Klimaarchive (z.B. tiefer Eisbohrkerne) an. Bevor jedoch Al-26 als ein sogenannter 'Proxy' für Klimaprozesse verwendet werden kann, muss Grundlagenarbeit geleistet werden. Im speziellen müssen die Quellen und Transportvorgänge von Al-26 in der Atmosphäre studiert werden. Damit verbunden ist die Entwicklung geeigneter Verfahren für die Messung von Luft- und Eisproben. Ein wichtige Voraussetzung für dieses Projekt ist die Existenz einer modernen Anlage für Beschleunigermassenspektrometrie. Der Vienna Environmental Research Accelerator (VERA) am Institut für Isotopenforschung und Kernphysik der Universität Wien bietet ideale Bedingungen für Messungen von Al-26. Mit dieser Anlage wurde kürzlich das weltweit niedrigste Isotopenverhältnis von Al-26/Al-27 (ca5e-16) gemessen. Das vorgeschlagene Projekt soll in enger Zusammenarbeit mit der 'Eisgruppe' des Instituts für Umweltphysik (IUP) der Universität Heidelberg durchgeführt werden. Das IUP wird nicht nur Proben von Luftfiltern und Eis aus der Atarktis und anderen Bereichen der Erde zur Verfügung stellen, sondern auch seine langjährige Erfahrung in Atmosphären- und Klimaforschung einbringen. Wir sind der Überzeugung, daß sich die verschiedenen Erfahrungsbereiche der zwei Gruppen für dieses multidisziplinäre Projekt optimal ergänzen.
This data publication is supplementary to a study on the effect of large boulders and bedrock fracture patterns on hillslope denudation rates in the Chilean Coastal Cordillera, by Lodes et al. (submitted). Hillslope denudation rates are primarily determined by tectonic uplift rates, but landscape morphology is also controlled by climate and lithological properties such as bedrock fractures. Fracture patterns can influence the locations of ridges and valleys in landscapes through lowering surface grain sizes in fractured areas, and therefore the residence time of fractured hillslope material, dictating differential denudation rates. In this project, we used 10Be cosmogenic nuclide analysis to quantify the denudation rates of fractured bedrock, boulders, and soil on hillslopes, and compared the orientations of surrounding streams and faults, to understand the effects of fracturing and faulting on denudation rates, fluvial incision, and grain size in three field sites along a climate gradient in the Chilean Coastal Cordillera. In the humid and semi-arid climate zones, we found that denudation rates for unfractured bedrock and large hillslope boulders (10 to 15 m Myr-1) are lower than for soil (15 to 20 m Myr-1), indicating that exposed bedrock and boulders retard hillslope denudation rates. In the mediterranean climate zone, hillslope denudation rates are higher (40-140 m Myr-1) and show a less consistent pattern, likely due to steeper slopes. LiDAR-derived stream orientations support a fracture-control on landscape denudation in the three field sites, which we link with fracture density. Together, our results thus provide new insights into how fracture patterns can dictate topographic highs and valleys through grain size reduction. The main objective of this data publication is to provide our 10Be dataset which we used to calculate denudation rates for bedrock, boulders, and soils.