API src

Found 2553 results.

Similar terms

s/dbm/HBM/gi

WMS Radverkehrsmengen (DB Rad+)

Dieser Web Map Service (WMS) enthält die Radverkehrsmengen, die mit Hilfe der App DB Rad+ im Hamburger Straßennetz erfasst werden. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Karte_SL - Wald 2

Digitales Landschaftsmodell:Digitales Landschaftsmodell

Karte_SL - Seen 4

Digitales Landschaftsmodell:Digitales Landschaftsmodell

Karte_SL - Orte 3

Digitales Landschaftsmodell:Digitales Landschaftsmodell

Karte_SL - Wege 0

Digitales Landschaftsmodell:Digitales Landschaftsmodell

Karte_SL - Schleuse

Digitales Landschaftsmodell:Digitales Landschaftsmodell

Karte_SL - Tagebau 1

Digitales Landschaftsmodell:Digitales Landschaftsmodell

3D-Gebäudemodell LoD2-DE Hamburg

3D-Gebäudemodell LoD2-DE Für den Datensatz Gebäudemodell LoD2-DE werden aus Punktwolken (Airborne Laserscanning oder Photogrammetrie ) vollautomatisiert standardisierte Dachformen gebildet, den Gebäuden zugeordnet und entsprechend des tatsächlichen Firstverlaufes ausgerichtet. Der Gebäudegrundriss wird grundsätzlich der amtlichen digitalen Liegenschaftskarte entnommen, das Modell ist damit grundrisskonform. Die Lagegenauigkeit entspricht der des zugrunde liegenden Gebäudegrundrisses. Die Höhengenauigkeit beträgt ca. ± 1 m. Grobe Abweichungen sind in Einzelfällen bei komplexen Dachformen möglich. Gemeinsam genutzte Geometrie wird redundant geführt. Die Gebäude werden zusätzlich mit Geländeinformationen des beim Landesbetrieb vorgehaltenen Digitalen Geländemodells (DGM) verschnitten. Es erfolgt keine manuelle Nachbearbeitung der einzelnen Modelle. Die Modellierung entspricht dem AdV-Produkt- und Qualitätsstandard für 3D-Gebäudemodelle. Die Aktualität der Datengrundlage ist i.d.R. aus dem vorangegangenen Jahr, bei ALS- Punktwolken teilweise auch älter. (Beispiel: Der Download LoD2-DE 2023 basiert auf ALKIS- Grundrissen und Punktwolken aus dem Jahr 2022) Das Gebäudemodell LoD2-DE wird für das gesamte Stadtgebiet Hamburgs (ca. 750 km²), einschließlich der Insel Neuwerk, vorgehalten. Die Daten können als Komplettdatensatz im Format CityGML V.1.0 heruntergeladen werden. Weitere Datenformate und Ausschnitte sind unter 3d-info@gv.hamburg.de kostenpflichtig zu beziehen. 3D-Gebäudemodell LoD2-DE Für den Datensatz Gebäudemodell LoD2-DE werden aus Punktwolken (Airborne Laserscanning oder Photogrammetrie ) vollautomatisiert standardisierte Dachformen gebildet, den Gebäuden zugeordnet und entsprechend des tatsächlichen Firstverlaufes ausgerichtet. Der Gebäudegrundriss wird grundsätzlich der amtlichen digitalen Liegenschaftskarte entnommen, das Modell ist damit grundrisskonform. Die Lagegenauigkeit entspricht der des zugrunde liegenden Gebäudegrundrisses. Die Höhengenauigkeit beträgt ca. ± 1 m. Grobe Abweichungen sind in Einzelfällen bei komplexen Dachformen möglich. Gemeinsam genutzte Geometrie wird redundant geführt. Die Gebäude werden zusätzlich mit Geländeinformationen des beim Landesbetrieb vorgehaltenen Digitalen Geländemodells (DGM) verschnitten. Es erfolgt keine manuelle Nachbearbeitung der einzelnen Modelle. Die Modellierung entspricht dem AdV-Produkt- und Qualitätsstandard für 3D-Gebäudemodelle. Die Aktualität der Datengrundlage ist i.d.R. aus dem vorangegangenen Jahr, bei ALS- Punktwolken teilweise auch älter. (Beispiel: Der Download LoD2-DE 2023 basiert auf ALKIS- Grundrissen und Punktwolken aus dem Jahr 2022) Das Gebäudemodell LoD2-DE wird für das gesamte Stadtgebiet Hamburgs (ca. 750 km²), einschließlich der Insel Neuwerk, vorgehalten. Die Daten können als Komplettdatensatz im Format CityGML V.1.0 heruntergeladen werden. Weitere Datenformate und Ausschnitte sind unter 3d-info@gv.hamburg.de kostenpflichtig zu beziehen.

ATKIS - DGM1 (2016)

DGM1 - Laserscan-Geländemodell Im Frühjahr 2016 fand eine Airborne-Laserscan-Befliegung zur Generierung eines neuen hochgenauen Geländemodells für das gesamte Saarland statt. Dabei wurde die Geländeoberfläche mit einem im Flugzeug installierten Laser abgetastet. Als Resultat liegt seit Anfang des Jahres 2017 das hochgenaue DGM1 mit einer Rasterweite von 1m und einer durchschnittlichen Höhengenauigkeit von 1-2 dm vor. Als gewünschter Nebeneffekt wurden neben Geländedaten auch auf der Erdoberfläche befindliche Objekte wie Gebäude und Vegetation mit eingescannt, die als Oberflächendaten verfügbar sind. Digitale Geländemodelle (DGM) sind digitale, numerische, auf ein regelmäßiges Gitter reduzierte Modelle der Geländehöhen und –formen der Erdoberfläche. DGM können außerdem ergänzende Angaben (z.B. Geländekanten, Geripplinien, markante Geländepunkte) enthalten. Sie beinhalten keine Information über Bauwerke (z.B. Brücken) und Vegetation. Das DGM1 unterscheidet sich von den anderen DGM durch seine Höhengenauigkeit und seine Gitterweite.

Regionaler zellularer Verbund von Versorgungseinheiten mit Netzregelaufgaben

Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.

1 2 3 4 5254 255 256