Die Wasserstoffisotopensignatur (Delta D-Wert) von Wasserpflanzenbiomarkern wird zunehmend zur Rekonstruktion vergangener hydrologischer Zustände von Seen verwendet. Während der Synthese dieser Biomarker findet eine Diskriminierung des schwereren Wasserstoffisotopes Deuterium im Vergleich zum aufgenommenen Wasser statt. Im direkten Vergleich zu terrestrischen Pflanzen gibt es sehr wenig verfügbare Daten bezüglich der Größe dieses Fraktionierungsfaktors (Epsilon). Weiterhin ist unbekannt, inwieweit Umweltfaktoren die Isotopenfraktionierung beeinflussen. Dieses fehlende Wissen erschwert die Interpretation von Gamma D-Werten aquatischer Biomarker in Seesedimentkernen erheblich. Eine bereits durchgeführte Pilotstudie und weitere erste Experimente suggerieren einen möglichen Einfluss von Salinität des Seewassers, sowie Nährstoff- und Lichtverfügbarkeit auf Epsilon. Um diesen Verdacht zu bestätigen, müssen nun die Magnituden von potentiellen Isotopeneffekten dieser Parameter in einer systematischen Studie untersucht werden. Wie bereits erfolgreich getestet, werden hierfür Wasserpflanzen verschiedener Spezies, unter kontrollierten Bedingungen, mit Fokus auf Variabilität genannter Parameter, im Labor gezüchtet. Weiterhin werden Makrophyten an geeigneten Standorten über weite Gradienten von Salinität und Nährstoffstatus beprobt und hinsichtlich Delta D-Werten von Biomarkern analysiert. Mithilfe der gewonnenen Daten aus dem gekoppelten Feld- und Laborversuch können die potentiellen Isotopeneffekte von Salinität, Nährstoffverfügbarkeit und Lichtintensität für die zukünftige Anwendung in paläoklimatischen Studien kalibriert werden. Die erwarteten Ergebnisse werden somit einen wichtigen Beitrag hinsichtlich der Interpretierbarkeit von Delta D-Werten aquatischer Biomarker aus Seesedimenten liefern. Die gewonnenen Erkenntnisse sind somit ein wichtiger Baustein zur Rekonstruierbarkeit vergangener hydrologischer Zustände von Seen und damit ein essentieller Faktor zum Verständnis möglicher zukünftiger Änderungen im Zusammenhang mit der Erderwärmung.
Ziel der Kernfusionsforschung ist es, die Energieproduktion der Sonne auf der Erde nachzuvollziehen: Ein Fusionskraftwerk soll Energie aus der Verschmelzung (Fusion) von Atomkernen gewinnen. Brennstoff ist ein duennes ionisiertes Gas, ein sogenanntes 'Plasma' aus den Wasserstoffsorten Deuterium und Tritium. Zum Zuenden des Fusionsfeuers muss das Plasma in Magnetfeldern eingeschlossen und auf hohe Temperaturen ueber 100 Millionen Grad aufgeheizt werden. In Fusionsexperimenten vom Typ 'Stellarator' wird das Plasma durch Magnetfelder eingeschlossen, die durch Magnetspulen ausserhalb des Plasmabereichs erzeugt werden. Weltweit sind die meisten der heute betriebenen Fusionsexperimente dagegen vom Typ 'Tokamak', die einen Teil des Feldes durch einen starken, im Plasma fliessenden elektrischen Strom herstellen. Das Stellaratorprinzip laesst jedoch gerade dort Staerken erwarten, wo die Tokamaks Schwaechen zeigen. Zum Beispiel sind Stellaratoren fuer Dauerbetrieb geeignet, waehrend Tokamaks ohne aufwendige Zusatzeinrichtungen nur pulsweise arbeiten. Stellaratoren koennten also die vorteilhaftere Loesung fuer ein Fusionskraftwerk sein. Kernstueck des Experimentes ist das Spulensystem aus 50 nicht-ebenen und supraleitenden Magnetspulen. Mit ihrer Hilfe soll WENDELSTEIN 7-X die wesentliche Stellaratoreigenschaft zeigen, den Dauerbetrieb. Der erzeugte Magnetfeldkaefig soll ein Plasma einschliessen, das mit Temperaturen bis 50 Millionen Grad ueberzeugende Schluesse auf die Kraftwerkseigenschaften der Stellaratoren ermoeglicht, ohne ein bereits energielieferndes Fusionsplasma herzustellen. Da sich die Eigenschaften eines gezuendeten Plasmas vom Tokamak zum grossen Teil auf Stellaratoren uebertragen lassen, kann das Experiment mit grosser Kostenersparnis auf den Einsatz des radioaktiven Fusionsbrennstoffes Tritium verzichten.
Hauptziel der geplanten Forschung ist die Quantifizierung der Interaktion zwischen Grundwasser und kleinen Standgewässern, sog. Söllen, und die Entwicklung einer Methode zur Übertragung der Ergebnisse auf größere Skalen. Zu diesem Zweck werden stabile Wasserisotope (18O und Deuterium) in Kombination mit einem vollständig integrierten hydrologischen Modell (HydroGeoSphere, HGS) und einem hybriden maschinellen Lernalgorithmus eingesetzt. Die Projektziele werden durch insgesamt 4 verschiedenen methodische Schritte erreicht: (1) Quantitative Abschätzung der Zufluss- und Verdunstungsdynamik verschiedener hydraulischer Solltypen in der Untersuchungsregion Uckermark (Recharge-, Discharge- und Durchflusssölle) mit Hilfe der stabilen Isotope 18O und D und Überprüfung der Zusammenhänge zwischen dem hydrologischen Sölltyp und der geochemischen Zusammensetzung des Sollwassers; (2) Anpassung, Kalibrierung und Validierung des hochauflösenden HGS-Modells zur genauen Berechnung der Wasserflüsse zwischen ausgewählten Sollkörpern verschiedenen Typs unter Einbeziehung des umgebenden Grundwassers; (3) Validierung der mit stabilen Isotopen berechneten Austauschraten durch die Ergebnisse der HGS Modellierung und Korrektur systematischer Unterschiede mit Hilfe eines entwickelten Bias-Korrekturalgorithmus; (4) Entwicklung von Metamodellen unter Verwendung eines hybriden maschinellen Lernalgorithmus, um eine Übertragbarkeit der Modellergebnisse auf die größere Skala zu ermöglichen.
Interdisziplinäre Bewertung unterschiedlicher waldbaulicher Eingriffe in Eichenbeständen, daraus Ableitung von Handlungsempfehlungen. 'Um mögliche gegenwärtige oder zukünftige Klimaänderungen beurteilen zu können, ist es unerlässlich, das Klima der Vergangenheit genau zu kennen und zu verstehen. Wertvolle Informationen über das vergangene Klima sind in Eiskernen von den beiden großen Eisschilden Grönlands und der Antarktis gespeichert. Insbesondere sind die Verhältnisse der stabilen Isotope des Schnees, 18-O und Deuterium, mit der Lufttemperatur korreliert und werden daher für die klimatische Interpretation von Eiskernen verwendet. Aber der Isotopengehalt hängt nicht nur von der Temperatur, sondern auch von anderen Faktoren ab, wie z.B. Saisonalität und Ursprungsgebiet des Niederschlags. Daher wird der Deuteriumexzess, eine Größe, die die Information von 18-O und Deuterium kombiniert, verwendet, um die Ursprungsgebiete des Niederschlags zu untersuchen. d hängt hauptsächlich von der Meeresoberflächentemperatur, der relativen Feuchte und der Windgeschwindigkeit im Ursprungs-gebiet ab. Indem man tested, unter welchen Annahmen für die im Ursprungsgebiet vorherrschenden Bedingungen die im Schnee gemessenen d-Werte mit Hilfe eines einfachen Isotopenmodells reproduziert werden können, erhält man Informationen über das Ursprungsgebiet. Der Spielraum für die möglichen Annahmen ist überraschend klein. Die meisten Deuteriumexzessuntersuchungen wurden für große Zeitmaßstäbe durchgeführt (Wechsel von Glazial zu Interglazial). In dieser Untersuchung werden Daten von der deutschen Antarktis-Überwinterungsstation ''Neumayer'' für eine Untersuchung in einem kleinen Zeitscale verwendet. Dort werden seit 20 Jahren Neuschneeproben unmittelbar nach dem Schneefall genommen. Durch die vorherrschenden hohen Windgeschwindigkeit wird der Schnee in einem gewissen Ausmaß verfrachtet, was zu Fehlern führen kann. Daher werden zunächst mit Hilfe eines Trajektorienmodells die Transportwege der Luftmassen, die Niederschlag nach Neumayer bringen, berechnet. Verschiedene Trajektorienklassen werden definiert, für die der mittlere Deuteriumexzess der Schneeproben bestimmt wird. Dann wird ein Isotopenmodell verwendet, um den beobachteten Deuteriumexzess zu modellieren. Da dieser stark von der relativen Luftfeuchte im Ursprungsgebiet des Niederschlags, die meist nicht bekannt ist, abhängt, soll ferner die Phasendifferenz zwischen Deuterium und Deuteriumexzess untersucht werden. Dazu werden Daten von einem Firnkern verwendet, der den Zeitraum von 1892-1981 abdeckt. Diese Phasendifferenz ist weniger stark von den Sättigungsbedingungen im Ursprungsgebiet abhängig und ist daher eine unabhängigere Bedingung, um Information über die Wasserdampfquelle abzuleiten. usw.
Die Transformation von Regenwäldern verändert ökosystemare Wasserkreisläufe in Bezug auf die Höhe der Flussraten, deren räumlicher Heterogenität und zeitlicher Dynamik. Wir möchten die räumliche und zeitliche Variabilität der pflanzlichen Wassernutzung an verschiedenen Standorten sowie Mechanismen der pflanzlichen Wassernutzung untersuchen. Die Methoden umfassen unterschiedliche Saftflusstechniken sowie luftgestützte Messungen von Blatttemperaturen in der Krone.
This dataset provides counts of diatom valves for the Lateglacial sediment sequence retrieved from Lake Hämelsee (Germany) in 2013. Counts per taxon are presented against both depth (m) and age (cal yr. BP). The diatom data provides information on Lateglacial ecosystem dynamics and the dataset was used to interpret changes in aquatic diversity as well as in palaeolimnological conditions. A total of 78 samples were selected for diatom analysis using 2-5 cm sample intervals throughout the Lateglacial section of the core sequence, with a higher sampling resolution (1 cm intervals) around key transitions. Organic matter was removed from the samples (ca. 0.01 grams dried sediment) by oxidation using 5 ml of H2O2 (30%) and heating in a water bath at 70 °C for 24-28 hrs. Subsequently, a few drops of HCl (50%) were added to remove residual H2O2 and carbonates. Samples were washed by adding distilled water, shaking vigorously, centrifuging at 1200 rpm for 4 minutes, and removing the liquid using a pipette. This process was repeated 5 times, and a few drops of ammonia (NH3) were added to the solution prior to the final wash to prevent clumping of diatoms. Diatom slides were mounted using Naphrax and diatoms were identified using Krammer and Lange-Bertalot (1986–1991) and Camburn and Charles (2000). For several samples the target count sum of 300 diatom valves could not be reached due to low concentrations or poor diatom preservation. Prior to analysis and interpretation, and where possible, neighbouring samples with a low count sum were amalgamated until a count of at least 100 valves was reached; if this was not possible the samples were deleted from our dataset prior to subsequent analysis (note that these samples are still included in the dataset provided here). All analyses were performed in the laboratories of University College London, UK.
This dataset provides glycerol dialkyl glycerol tetraethers (GDGTs) concentrations for the Lateglacial sediment sequence retrieved from Lake Hämelsee (Germany) in 2013. GDGTs concentrations (ng/g) are presented against both depth (m) and age (cal yr. BP). The GDGTs dataset was used to calculate the GDGT-0/crenarchaeol ratio, which was interpreted to represent lake water oxygenation, which, given the local settings, was likely driven by changes in windiness. Additionally, the GDGT dataset was used to calculate the degree of methylation of 5-methyl brGDGTs (MBT'5me), which can be used to reconstruct past temperature change through translation MBT'5me into mean temperature of the months above freezing. As such, the GDGT data provides information on LGIT climate dynamics at lake Hämelsee. Of the 167 samples used for lipid extraction (see https://doi.pangaea.de/10.1594/PANGAEA.964524), the alcohol/fatty acid fraction of 94 samples was further processed to analyse glycerol dialkyl glycerol tetraethers (GDGTs), which are membrane lipids of certain archaea and bacteria (Schouten et al., 2013). In short, a known amount of internal standard was added to each fraction, which was then redissolved in hexane:isopropanol 99:1 and passed over a 0.45 µm PTFE filter prior to injection on a Agilent 1260 Infinity ultra-high performance liquid chromatograph coupled to an Agilent 6130 single quadrupole mass spectrometer following the settings and elution protocol of Hopmans et al. (2016). A minimum peak area of 3000 and a signal-to-noise ratio of >3 was maintained as detection limit. Quantification of the GDGTs is based on the assumption that the mass spectrometer equally responds to the GDGTs and the internal standard. All analyses were performed in the laboratories of Utrecht University, the Netherlands.
This dataset provides counts of chironomid head capsules for the Lateglacial sediment sequence retrieved from Lake Hämelsee (Germany) in 2013. Counts per taxon are presented against both depth (m) and age (cal yr. BP), and the total amount of material used for analysis (in g) is provided as well. The chironomid data provides information on Lateglacial ecosystem dynamics and were used to interpret changes in aquatic diversity as well as in local climate conditions. A total of 123 samples from the Lateglacial section of the core were treated with warm KOH (10%) to de-flocculate the material and subsequently rinsed through a sieve with a 100-µm mesh. Chironomid head capsules (HCs) were hand-picked from the residue using a Bogorov sorting tray and mounted on permanent microscope slides using Euparal mounting medium. HCs were identified using Brooks et al. (2007) and the dataset presented here has been matched to the taxonomy of the merged Norwegian/Swiss chironomid-climate calibration dataset. Several samples had low chironomid concentrations and for these we amalgamated adjacent samples (within lithological boundaries) to reach a minimum count sum of 50 head capsules per sample. This process resulted in the final chironomid dataset that is presented here, containing 97 samples. All analyses were performed in the laboratories of the University of Amsterdam, the Netherlands.
Origin | Count |
---|---|
Bund | 28 |
Wissenschaft | 6 |
Type | Count |
---|---|
Förderprogramm | 28 |
Messwerte | 5 |
Strukturierter Datensatz | 6 |
License | Count |
---|---|
offen | 34 |
Language | Count |
---|---|
Deutsch | 25 |
Englisch | 13 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 5 |
Keine | 19 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 25 |
Lebewesen & Lebensräume | 21 |
Luft | 19 |
Mensch & Umwelt | 34 |
Wasser | 29 |
Weitere | 34 |