Batterien auf Polymerbasis haben in den letzten Jahren aufgrund ihrer interessanten Eigenschaften großes Forschungsinteresse auf sich gezogen. Zu ihren Vorzügen zählen ihr geringes Gewicht, die Möglichkeit, auf kritische Metalle zu verzichten, die Nutzung verfügbarer Elemente und ihre bessere Nachhaltigkeit bei Herstellung und Wiederverwertung. In den vergangenen Jahren wurden verschiedene redoxaktive Polymere untersucht, was zu vielen Strukturmotiven führte, die als potenzielle Elektrodenmaterialien identifiziert wurden. Derzeit sind allerdings nur begrenzt verschiedene Anodenmaterialien verfügbar. In diesem Zusammenhang werden in diesem Gemeinschaftsprojekt der FSU Jena und der JLU Giessen neue redoxaktive Polymere entwickelt, die auf drei Strukturmotiven basieren: Benzimidazole, Benzoxazole und Benzothiazole, die alle pyridyl-substituiert sind. Die resultierenden (elektrochemischen) Eigenschaften können durch die Substituenten und das Heteroatom im Fünfring (-NH-, NR-, -O-, -S-) eingestellt werden. Ein kombinierter theoretischer (JLU) und experimenteller (FSU) Screening-Ansatz wird verwendet, um die vielversprechendsten aktiven Materialien zu identifizieren. Zunächst werden geeignete Redox-Einheiten durch Berechnung und theoretisches Screening verschiedener Modellverbindungen mittels DFT untersucht. Darüber hinaus werden Redox-Einheiten mit vielversprechenden Eigenschaften synthetisiert und ihre elektrochemischen Eigenschaften untersucht. Basierend auf diesem ersten Screening werden geeignete Einheiten für die Integration in Polymere ausgewählt. Der zweite Schritt des Projekts ist die Modellierung der Polymere sowie ihre Synthese und die Untersuchung ihrer elektrochemischen Eigenschaften. Die Polymermaterialien mit den besten Eigenschaften werden für die Herstellung von Elektroden verwendet werden. Diese Elektroden werden in (Halb) Zelltests getestet.
Untersuchung von photoelektrochemischen Systemen am Beispiel von n-TiO2-Halbleiterelektroden. Zusammenhang zwischen photophysikalischen, elektrochemischen und halbleiterphysikalischen Daten von unterschiedlich hergestellten polikristallinen TiO2-Schichten. Vergleich thermisch oxidierter, anodisch oxidierter und vakuum-aufgedampfter Halbleiter. Messung ihrer Stabilitaet und der Photoeffizienz. Untersuchung von Farbstoffen hinsichtlich Stabilitaet gegenueber Angriff von H- und OH-Radikalen, die bei der photokatalytischen H2O-Spaltung entstehen. Untersuchung von Methylenblau, Thionin, Acridinorange, Rhuteniumpyridil, Prophyrine etc. TiO2-Suspensionen als Photokatalysator fuer O2-Entwicklung aus sauren und Ce4+-haltigen waessrigen Systemen. Farbstoffsensibilisierung an Halbleiterelektroden: Farbstoffe im Elektrolyten oder adsorbiert an der Halbleiteroberflaeche.
Ziel dieses gemeinsamen Projektes von IPF Dresden und FSU Jena ist die Entwicklung neuartiger Polymerelektrolyte, komplementär zu relevanten Modell-Aktivmaterialien, für polymerbasierte Batterien. Die zu entwickelnden Elektrolyte werden mit polymerchemischen Mitteln hinsichtlich Ionentransport, Morphologie, thermischer und elektrochemischer Stabilität und Kompatibilität mit den Elektroden (z.B. Aktivmaterial und Leitadditiv) maßgeschneidert. Neben der Erforschung prinzipieller Transportmechanismen, soll das Projekt einen Beitrag zum besseren Verständnis des Einflusses von Elektrolytstruktur und der Grenzflächen zu den Elektroden auf die Zellleistung und, als Hauptziel, neue Erkenntnisse über den Zusammenhang von chemischer und morphologischer Struktur der Zellkomponenten und Batterieverhalten liefern. Dafür werden zuerst polymere Ionenleitersysteme für Einzelionen synthetisiert, die für Aktivmaterialen, die einen Anionentransport erfordern, geeignet sind. Der zweite Ansatz zielt darauf, auch Systeme mit einer Umkehr des Ladungstransports zu untersuchen, hierfür werden Aktivmaterialien mit geladenen Spezies ausgerüstet. Weiterhin werden Triblock-Copolymere entwickelt, die alle für eine molekulare Batterie notwendigen Komponenten enthalten.
Dieses Projekt zielt darauf ab, synthetisches und elektrochemisches Fachwissen zu kombinieren, um die Entwicklung neuer kleiner elektroaktiver organischer Moleküle und deren Einarbeitung in Polymere voranzutreiben. Die am häufigsten untersuchten organischen Radikalbatteriesysteme basieren auf TEMPO-haltigen Polymeren. Um jedoch ihre Leistung und insbesondere ihre Energiedichte zu verbessern, sind neuartige kleinere organische redoxaktive Moleküle dringend erforderlich. Hierbei konzentrieren wir uns auf die kleinsten bekannten redoxaktiven organischen Spezies, nämlich Derivate von Cyclopropeniumkationen und Quadratsäureamiden. Sie sollen als Bausteine für eine neue Klasse von redoxaktiven Polymeren dienen, die sich als Materialien zur elektrochemischen Energiespeicherung eignen. Diese redoxaktiven Polymermaterialien in Organischen Radikalbatterien müssen eine Reihe von Kriterien erfüllen: (i) stabile und reversible Redoxzustände, (ii) einfacher synthetischer Zugang, sowie (iii) große positive und/oder negative Redoxpotenziale, um hohe Vollzellenspannungen zu erhalten.
Verwendet man halbleitende Materialien als Elektroden in elektrochemischen Zellen, so beobachtet man, dass bei Belichtung - also auch bei Sonneneinstrahlung - Photostroeme auftreten. Die so in Elektroenergie umgewandelte Strahlungsenergie kann direkt oder zur Wasserzersetzung, das heisst zur Wasserstofferzeugung, verwendet werden. Der geschilderte Funktionsablauf ist experimentell in den verschiedenen Stufen wenig untersucht. Zunaechst sollen moeglichst billige Halbleitermaterialien als Elektroden praepariert in elektrochemischen Solarzellen eingesetzt werden. Mit amorphen Halbleitern sollten kostenguenstige Anlagen erstellbar sein. Das Elektrodenmaterial selbst darf bei den auftretenden Photopotentialen nicht zersetzt werden.
Der Energiewandlungsprozess in einem elektrohydrodynamischen Generator mit einer nanostrukturierten Elektrode soll experimentell untersucht werden. Dazu werden freie Ladungen über eine Koronaentladung in eine Gasströmung eingebracht und durch die Reibung mit den umgebenden Gasmolekülen zu einer Gegenelektrode transportiert. Auf diese Weise wird mechanische in elektrische Energie gewandelt. Aus Vorarbeiten existieren Hinweise, dass mit Hilfe von nanostrukturierten Elektroden der Energiewandlungsprozess deutlich effizienter gestaltet werden kann als mit herkömmlichen Elektroden. Es soll eine Energiestrombilanz aufgestellt werden, welche die Grundlage für die daran anschließende Maximierung der Energiewandlungseffizienz bildet. Später soll der Generator in einen Capillary Pumped Loop integriert werden, der es ermöglichen soll, thermische in elektrische Energie zu wandeln. Im Kontext miniaturisierter Energiewandlersysteme soll auch das Potential von Koronaentladungen zur Förderung von Luft für Verbrennungsprozesse untersucht werden.
Vergleich von klassischen GC-MS-Methoden mit den von der Gruppe Baumann entwickelten Immunelektroden, die nur ein sehr hochohmiges Millivoltmeter zum Messen voraussetzen
a) Herstellung und Optimierung von Elektrode-Membran-Verbuenden fuer die Membranbrennstoffzelle. Es wurde ein Spruehverfahren zur Herstellung von Elektrode-Membran-Verbuenden entwickelt. b) Optimierung der Elektrodenstruktur der Kathode fuer den Betrieb mit Luft bei 1 bar. c) Entwicklung und Charakterisierung von ternaeren Katalysatoren fuer die Direkt-Methanol-Brennstoffzelle auf der Basis Pt/Ru. d) Herstellung von verbesserten makroporoesen Luftelektroden.
| Origin | Count |
|---|---|
| Bund | 1397 |
| Type | Count |
|---|---|
| Förderprogramm | 1397 |
| License | Count |
|---|---|
| offen | 1397 |
| Language | Count |
|---|---|
| Deutsch | 1336 |
| Englisch | 123 |
| Resource type | Count |
|---|---|
| Keine | 663 |
| Webseite | 734 |
| Topic | Count |
|---|---|
| Boden | 608 |
| Lebewesen und Lebensräume | 493 |
| Luft | 738 |
| Mensch und Umwelt | 1395 |
| Wasser | 483 |
| Weitere | 1397 |