Am Standort Elgersweier wird die Hansgrohe AG ein innovatives Kunststoffmetallisierungsverfahren erstmalig in Betrieb nehmen. Im Hansgrohe Werk werden Artikel aus Kunststoff wie Handbrausen sowie deren Zubehör dekorativ verchromt. Ziel des Vorhabens ist, durch den Einsatz eines neuartigen Kunststoffmetallisierungsverfahrens die Verchromung von Kunststoffen durch elektrolytische statt durch chemische Verfahren durchzuführen. Nach der derzeitigen Praxis wird immer erst die gesamte Oberfläche vernickelt. Im Anschluss wird in einem aufwändigen und umweltbelastenden Strippverfahren Nickel an den Stellen, an denen kein Nickel erwünscht ist, wieder entfernt. Während dieser Prozessschritte wird hoch konzentrierte Chromsäure eingesetzt, wobei toxische und krebserregende Chrom (VI)-Verbindungen entstehen. Durch das veränderte Verfahren besteht die Möglichkeit, nur den Teil der Oberfläche des Kunststoffs zu vernickeln, der dafür vorgesehen ist. Der Einsatz der Chromsäure kann so um mehr als 50 Prozent verringert werden. Dies ist insbesondere eine Entlastung für die Umwelt und die betroffenen Mitarbeiter aber auch ein wirtschaftlicher Vorteil, da mit Anwendung des Verfahrens ganze Bearbeitungsschritte entfallen.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Im Rahmen des Projektes mit den Partnern Rheinmetall, McPhy und DLR wird ein AEL-Stapel mit hohem Wirkungsgrad und hoher Stromdichte entwickelt und optimiert, der aus fortschrittlichen, kostengünstigen, industriell skalierbaren Komponenten besteht und an einem 60-kW-Industrieprüfstand von McPhy seine Feldtauglichkeit über 6 Monate demonstriert. Die Weiterentwicklung der AEL wird sich auf zwei Schlüsselinnovationen stützen: - Integriertes Elektrodenpaket Ein hochaktiver Katalysator auf Basis eines kostengünstigen Nicht-Edelmetalls integriert mit einer mikroporösen Schicht und einer makroporösen Flüssigkeits-Gas-Diffusions-Schicht. Das vereinheitlichte Elektrodenpaket wird die Optimierung der katalytischen Aktivität mit dem optimierten Transport der Medien (flüssiger Elektrolyt & Gase) und der elektrischen Leitung kombinieren. Das Ziel im Vorhaben ist die Hochskalierung der Elektroden auf 400 cm2 für die Integration in eine praxisnahe Einzelzelle und über 1055 cm2 für die Integration in einen 60-kW-Industrieprüfstand-Stack im 6-Monats-Betrieb zur Feldtauglichkeitsvalidierung. - Feststoffmembran Dünne und dichte AEM-Membranen für den Betrieb bei hoher KOH-Konzentration werden anstelle von porösen Membranen wie z.B. Zirfon qualifiziert. Dadurch wird zum Einen der ohmsche Widerstand gesenkt und zum Anderen Reinheit und Differenzdruck erhöht. Durch die Kombination dieser innovativen Komponenten soll eine neue Generation von AEL mit sehr fortschrittlichen 3.87 kWh/Nm3 @ 0.5 A/cm2 und 4.30 kWh/Nm3 @ 1.2 A/cm2 erreicht werden. Darüber hinaus müssen stringente Degradationsziele erreicht werden und die Hochskalierung der Elektroden demonstriert werden. Die Kostenziele orientieren sich an den Zielen der EU-Kommission und der Nat. Wasserstoffstrategie. Die Arbeitspakete beinhalten Entwicklung der Komponenten, ihre Hochskalierung, Langzeitstabilität, Stack-Integration und Demonstration in einem 60 kW Prüfstand.
Die Zielstellung des skizzierten Projekts im Rahmen der Technologieoffensive Wasserstoff ist es, die bestehende alkalische Elektrolyse (AEL) in die nächste Generation zu überführen. Die nächste Generation der AEL - AWEC++ - lässt sich durch 4 Punkte definieren. Dies sind 1. Stabilität bei erhöhten Temperatur- und Druckbedingungen 2. Ein modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalierbar ist 3. Dynamik in der Wasserstoff-Produktionsleistung 4. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte Im Bereich Wasserstoff hat das Unternehmen Erfahrungen im Bereich von Brennstoffzellen und Wasserstofftanks, wobei strukturmechanische, strömungsmechanische, thermische und elektrochemische Prozesse simulativ abgebildet werden. Somit wird Merkle & Partner bei Fragestellungen wie z.B. Endplattenauslegung, Gasblasenbildung und Gleichstromverteilungen unterstützen.
Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Beim Schmelzen von Aluminium werden grosse Rauchgasmengen erzeugt. Der Chargenbetrieb der Schmelzoefen hat Schwankungen der Rauchgastemperatur und des -volumenstroms zur Folge. In Zusammenarbeit mit der Hamburger Aluminiumwerk GmbH wurde fuer diese Rauchgase ein optimales Abwaermenutzungskonzept erarbeitet, das einen Dampfkreislauf bestehend aus Dampferzeuger, Turbogenerator und Kondensator vorsieht. Der Turbogenerator ist in der Lage, einen betraechtlichen Teil zur elektrischen Stromversorgung der Aluminiumelektrolyse beizutragen, was indirekt ueber eine Einsparung von Primaerenergie zu einer Reduzierung des CO2-Ausstosses fuehrt.
Das Verfahren erlaubt die nahezu abfallfreie Regeneration des Chromsaeurebades. Die Verunreinigungen koennen in Form wiederverwertbarer Metalle aus dem laufenden Verchromungsprozess ausgeschleust werden. Die Regeneration der Chrombaeder basiert auf der kathodischen Abscheidung der Stoerionen (Eisen) bei gleichzeitiger Reoxidation der Chrom(III)- Ionen. Die Regenerationsanlage ist als Zweikammerelektrolysezelle ausgelegt. Anoden- und Kathodenraum werden durch eine Membran auf Teflonbasis getrennt, die nur Kationen passieren laesst. Das zu reinigende Chrombad wird in die Anodenkammer eingebracht. Im elektrischen Feld wandern die verunreinigenden Metallionen durch die Membran und werden an der Kathode als wiederverwertbares Metall abgeschieden. Gleichzeitig werden die Chrom(III)- Ionen im Anodenraum zur Chromsaeure reoxidiert.
Um eine ressourcenschonende und energieeffiziente Brennstoffzellenproduktion zu etablieren, bedarf es verbesserter Kontrollsysteme und Prüfmethoden. Übergeordnetes Ziel des Projektes ist daher, die modulare Abbildung der gesamten Test- und Charakterisierungskette zu realisieren. Dazu sollen Konzepte entwickelt und prototypisch umgesetzt werden, die auf eine automatisierte Produktion mit integrierten, kostengünstigen Prüfungen von Brennstoffzellen und deren Komponenten abzielen. Der Fokus liegt dabei auf der Prüfung relevanter Komponenten und Prozessschritte entlang der Produktionskette. Mit der Evaluierung verschiedener Prüfverfahren, wie z.B. der vibroakustischen Emissionsdetektion, verfolgt Amitronics einen vielversprechenden Ansatz, der mit Hilfe von Methoden des maschinellen Lernens dazu dienen soll, schnell und effizient Vorhersagemodelle für Bauzustände (Funktionsdichtheit der BZ) und Produktionsprozesse (Schweißprozesse) zu entwickeln. Am Beispiel des laserbasierten Fertigungsprozesses der BPP soll die neben Wärmestrahlung und Streulicht entstehende Ultraschallakustik zur Überprüfung der Qualität der erzeugten Schweißnähte genutzt werden. Ziel ist es zu untersuchen, ob mit KI-basierten Methoden eine Echtzeitüberwachung der Brennstoffzelle hinsichtlich ihrer Schweißnähte möglich ist. Durch eine sich anschließende Kombination der verschiedenen Prüfmodule soll eine Überwachung der Prüfkette erreicht und Trends in den Datenreihen abgeleitet werden. Durch die Integration eines vibroakustischen Überwachungssystems sollen Material- und Produktionsbedingungen so bewertet werden, dass Fehler bereits während der Produktion (Schweißprozess) vermieden werden können. Damit wird eine effiziente Produktionstechnologie Realität, die eine Qualitätskontrolle in Echtzeit und eine Null-Fehler-Produktion mit hoher Rate ermöglichen soll.
Origin | Count |
---|---|
Bund | 1469 |
Land | 75 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 1392 |
Text | 89 |
Umweltprüfung | 38 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 90 |
offen | 1394 |
unbekannt | 58 |
Language | Count |
---|---|
Deutsch | 1507 |
Englisch | 173 |
Resource type | Count |
---|---|
Archiv | 58 |
Datei | 60 |
Dokument | 119 |
Keine | 1087 |
Unbekannt | 2 |
Webseite | 340 |
Topic | Count |
---|---|
Boden | 805 |
Lebewesen und Lebensräume | 800 |
Luft | 781 |
Mensch und Umwelt | 1542 |
Wasser | 706 |
Weitere | 1451 |